@@ -46,17 +46,18 @@ class GaloisGroup_v1(SageObject):
46
46
EXAMPLES::
47
47
48
48
sage: from sage.rings.number_field.galois_group import GaloisGroup_v1
49
- sage: K = QQ[2^(1/3)]
50
- sage: G = GaloisGroup_v1(K.absolute_polynomial().galois_group(pari_group=True), K); G
49
+ sage: K = QQ[2^(1/3)] # optional - sage.symbolic
50
+ sage: pK = K.absolute_polynomial() # optional - sage.symbolic
51
+ sage: G = GaloisGroup_v1(pK.galois_group(pari_group=True), K); G # optional - sage.symbolic
51
52
...DeprecationWarning: GaloisGroup_v1 is deprecated; please use GaloisGroup_v2
52
53
See https://github.com/sagemath/sage/issues/28782 for details.
53
54
Galois group PARI group [6, -1, 2, "S3"] of degree 3 of the
54
55
Number Field in a with defining polynomial x^3 - 2 with a = 1.259921049894873?
55
- sage: G.order()
56
+ sage: G.order() # optional - sage.symbolic
56
57
6
57
- sage: G.group()
58
+ sage: G.group() # optional - sage.symbolic
58
59
PARI group [6, -1, 2, "S3"] of degree 3
59
- sage: G.number_field()
60
+ sage: G.number_field() # optional - sage.symbolic
60
61
Number Field in a with defining polynomial x^3 - 2 with a = 1.259921049894873?
61
62
"""
62
63
@@ -96,11 +97,11 @@ def __eq__(self, other):
96
97
sage: G = GaloisGroup_v1(K.absolute_polynomial().galois_group(pari_group=True), K)
97
98
...DeprecationWarning: GaloisGroup_v1 is deprecated; please use GaloisGroup_v2
98
99
See https://github.com/sagemath/sage/issues/28782 for details.
99
- sage: L = QQ[sqrt(2)]
100
- sage: H = GaloisGroup_v1(L.absolute_polynomial().galois_group(pari_group=True), L)
101
- sage: H == G
100
+ sage: L = QQ[sqrt(2)] # optional - sage.symbolic
101
+ sage: H = GaloisGroup_v1(L.absolute_polynomial().galois_group(pari_group=True), L) # optional - sage.symbolic
102
+ sage: H == G # optional - sage.symbolic
102
103
False
103
- sage: H == H
104
+ sage: H == H # optional - sage.symbolic
104
105
True
105
106
sage: G == G
106
107
True
@@ -125,11 +126,11 @@ def __ne__(self, other):
125
126
sage: G = GaloisGroup_v1(K.absolute_polynomial().galois_group(pari_group=True), K)
126
127
...DeprecationWarning: GaloisGroup_v1 is deprecated; please use GaloisGroup_v2
127
128
See https://github.com/sagemath/sage/issues/28782 for details.
128
- sage: L = QQ[sqrt(2)]
129
- sage: H = GaloisGroup_v1(L.absolute_polynomial().galois_group(pari_group=True), L)
130
- sage: H != G
129
+ sage: L = QQ[sqrt(2)] # optional - sage.symbolic
130
+ sage: H = GaloisGroup_v1(L.absolute_polynomial().galois_group(pari_group=True), L) # optional - sage.symbolic
131
+ sage: H != G # optional - sage.symbolic
131
132
True
132
- sage: H != H
133
+ sage: H != H # optional - sage.symbolic
133
134
False
134
135
sage: G != G
135
136
False
0 commit comments