@@ -424,13 +424,16 @@ def is_division_algebra(self) -> bool:
424424 True
425425 sage: QuaternionAlgebra(2,9).is_division_algebra()
426426 False
427+ sage: K.<z> = QuadraticField(3)
428+ sage: QuaternionAlgebra(K, 1+z, 3-z).is_division_algebra()
429+ False
427430
428431 By checking ramification, the method correctly recognizes division
429432 quaternion algebras over a number field even if they have trivial
430433 discriminant::
431434
432- sage: K = QuadraticField(3 )
433- sage: A = QuaternionAlgebra(K , -1, -1)
435+ sage: L = QuadraticField(5 )
436+ sage: A = QuaternionAlgebra(L , -1, -1)
434437 sage: A.discriminant()
435438 Fractional ideal (1)
436439 sage: A.is_division_algebra()
@@ -462,13 +465,16 @@ def is_matrix_ring(self) -> bool:
462465 False
463466 sage: QuaternionAlgebra(2,9).is_matrix_ring()
464467 True
468+ sage: K.<z> = QuadraticField(3)
469+ sage: QuaternionAlgebra(K, 1+z, 3-z).is_matrix_ring()
470+ True
465471
466472 By checking ramification, the method is able to recognize that
467473 quaternion algebras (defined over a number field) with trivial
468474 discriminant need not be matrix rings::
469475
470- sage: K = QuadraticField(3 )
471- sage: A = QuaternionAlgebra(K , -1, -1)
476+ sage: L = QuadraticField(5 )
477+ sage: A = QuaternionAlgebra(L , -1, -1)
472478 sage: A.discriminant()
473479 Fractional ideal (1)
474480 sage: A.is_matrix_ring()
0 commit comments