@@ -391,10 +391,10 @@ cpdef find_construction_3_5(int k, int n):
391391 for s in range (min (i+ 1 ,nn)):
392392 for r in range (max (0 ,i- nn- s), min (s+ 1 ,i- s+ 1 ,nn)):
393393 t = i - r - s
394- if ((nn- r- 1 )* (nn- s) < t and
395- (r== 0 or is_available(k,r)) and
396- (s== 0 or is_available(k,s)) and
397- (t== 0 or is_available(k,t))):
394+ if ((nn- r- 1 )* (nn- s) < t and
395+ (r== 0 or is_available(k, r)) and
396+ (s== 0 or is_available(k, s)) and
397+ (t== 0 or is_available(k, t))):
398398 from sage.combinat.designs.orthogonal_arrays_build_recursive import construction_3_5
399399 return construction_3_5, (k,nn,mm,r,s,t)
400400
@@ -481,15 +481,15 @@ cpdef find_q_x(int k, int n):
481481 x = (n- q** 2 + q- 2 )/ (2 - q)
482482 if (x < q and
483483 0 < x and
484- n == (q- 1 )* (q- x)+ x+ 2 and
485- is_available(k+ 1 ,q- x- 1 ) and
486- is_available(k+ 1 ,q- x+ 1 ) and
484+ n == (q- 1 )* (q- x)+ x+ 2 and
485+ is_available(k+ 1 , q- x- 1 ) and
486+ is_available(k+ 1 , q- x+ 1 ) and
487487 # The next is always True, because q is a prime power
488488 # is_available(k+1,q) and
489- is_available(k, x+ 2 ) and
489+ is_available(k, x+ 2 ) and
490490 smallInteger(q).is_prime_power()):
491491 from sage.combinat.designs.orthogonal_arrays_build_recursive import construction_q_x
492- return construction_q_x, (k,q, x)
492+ return construction_q_x, (k, q, x)
493493 return False
494494
495495cpdef find_thwart_lemma_3_5(int k, int N):
@@ -865,11 +865,11 @@ def int_as_sum(int value, list S, int k_max):
865865 vv = v- i
866866 if vv == 0 :
867867 return D[v] + (i,)
868- if (vv > 0 and # The new integer i is too big
868+ if (vv > 0 and # The new integer i is too big
869869 vv <= j* max_value and # The new integer i is too small
870- vv not in D and # We had it in D already
870+ vv not in D and # We had it in D already
871871 vv not in new_D): # We had it in new_D already
872- new_D[vv] = D[v]+ (i,)
872+ new_D[vv] = D[v] + (i,)
873873 if not new_D:
874874 break
875875 D.update(new_D)
0 commit comments