@@ -1011,9 +1011,9 @@ def is_polhill(int v, int k, int l, int mu):
1011
1011
sage: from sage. graphs. strongly_regular_db import is_polhill
1012
1012
sage: t = is_polhill( 1024, 231, 38, 56) ; t
1013
1013
[<cyfunction is_polhill.<locals>.<lambda> at ...> ]
1014
- sage: g = t[0 ]( * t[1: ]) ; g # not tested ( too long)
1014
+ sage: g = t[0 ]( * t[1: ]) ; g # not tested ( too long)
1015
1015
Graph on 1024 vertices
1016
- sage: g. is_strongly_regular( parameters=True) # not tested ( too long)
1016
+ sage: g. is_strongly_regular( parameters=True) # not tested ( too long)
1017
1017
( 1024, 231, 38, 56)
1018
1018
sage: t = is_polhill( 1024, 264, 56, 72) ; t
1019
1019
[<cyfunction is_polhill.<locals>.<lambda> at ...> ]
@@ -1496,7 +1496,7 @@ def is_twograph_descendant_of_srg(int v, int k0, int l, int mu):
1496
1496
1497
1497
sage: graphs.strongly_regular_graph(279 , 150 , 85 , 75 , existence = True )
1498
1498
True
1499
- sage: graphs.strongly_regular_graph(279 , 150 , 85 , 75 ).is_strongly_regular(parameters = True ) # optional - gap_package_design internet
1499
+ sage: graphs.strongly_regular_graph(279 , 150 , 85 , 75 ).is_strongly_regular(parameters = True ) # optional - gap_package_design internet
1500
1500
(279 , 150 , 85 , 75 )
1501
1501
"""
1502
1502
cdef int b, k, s
@@ -1642,7 +1642,7 @@ def is_switch_OA_srg(int v, int k, int l, int mu):
1642
1642
1643
1643
EXAMPLES::
1644
1644
1645
- sage: graphs.strongly_regular_graph(170 , 78 , 35 , 36 ) # indirect doctest
1645
+ sage: graphs.strongly_regular_graph(170 , 78 , 35 , 36 ) # indirect doctest
1646
1646
Graph on 170 vertices
1647
1647
1648
1648
TESTS::
@@ -1909,8 +1909,8 @@ def SRG_100_44_18_20():
1909
1909
EXAMPLES::
1910
1910
1911
1911
sage: from sage.graphs.strongly_regular_db import SRG_100_44_18_20
1912
- sage: G = SRG_100_44_18_20() # long time
1913
- sage: G.is_strongly_regular(parameters = True ) # long time
1912
+ sage: G = SRG_100_44_18_20() # long time
1913
+ sage: G.is_strongly_regular(parameters = True ) # long time
1914
1914
(100 , 44 , 18 , 20 )
1915
1915
"""
1916
1916
L = ['100', '110', '130', '140', '200', '230', '240', '300', '310', '320',
@@ -1931,8 +1931,8 @@ def SRG_100_45_20_20():
1931
1931
EXAMPLES::
1932
1932
1933
1933
sage: from sage.graphs.strongly_regular_db import SRG_100_45_20_20
1934
- sage: G = SRG_100_45_20_20() # long time
1935
- sage: G.is_strongly_regular(parameters = True ) # long time
1934
+ sage: G = SRG_100_45_20_20() # long time
1935
+ sage: G.is_strongly_regular(parameters = True ) # long time
1936
1936
(100 , 45 , 20 , 20 )
1937
1937
"""
1938
1938
L = ['120', '140', '200', '210', '201', '401', '411', '321', '002', '012',
@@ -1985,8 +1985,8 @@ def SRG_120_77_52_44():
1985
1985
EXAMPLES::
1986
1986
1987
1987
sage: from sage.graphs.strongly_regular_db import SRG_120_77_52_44
1988
- sage: G = SRG_120_77_52_44() # optional - gap_package_design
1989
- sage: G.is_strongly_regular(parameters = True ) # optional - gap_package_design
1988
+ sage: G = SRG_120_77_52_44() # optional - gap_package_design
1989
+ sage: G.is_strongly_regular(parameters = True ) # optional - gap_package_design
1990
1990
(120 , 77 , 52 , 44 )
1991
1991
"""
1992
1992
from sage.combinat.designs.block_design import WittDesign
@@ -2290,8 +2290,8 @@ def SRG_280_135_70_60():
2290
2290
EXAMPLES::
2291
2291
2292
2292
sage: from sage.graphs.strongly_regular_db import SRG_280_135_70_60
2293
- sage: g= SRG_280_135_70_60() # long time # optional - internet
2294
- sage: g.is_strongly_regular(parameters = True ) # long time # optional - internet
2293
+ sage: g= SRG_280_135_70_60() # long time, optional - internet
2294
+ sage: g.is_strongly_regular(parameters = True ) # long time, optional - internet
2295
2295
(280 , 135 , 70 , 60 )
2296
2296
"""
2297
2297
from sage.libs.gap.libgap import libgap
@@ -2398,8 +2398,8 @@ def SRG_416_100_36_20():
2398
2398
EXAMPLES::
2399
2399
2400
2400
sage: from sage.graphs.strongly_regular_db import SRG_416_100_36_20
2401
- sage: g = SRG_416_100_36_20() # long time # optional - internet
2402
- sage: g.is_strongly_regular(parameters = True ) # long time # optional - internet
2401
+ sage: g = SRG_416_100_36_20() # long time, optional - internet
2402
+ sage: g.is_strongly_regular(parameters = True ) # long time, optional - internet
2403
2403
(416 , 100 , 36 , 20 )
2404
2404
"""
2405
2405
from sage.libs.gap.libgap import libgap
@@ -2422,8 +2422,8 @@ def SRG_560_208_72_80():
2422
2422
EXAMPLES::
2423
2423
2424
2424
sage: from sage.graphs.strongly_regular_db import SRG_560_208_72_80
2425
- sage: g = SRG_560_208_72_80() # not tested (~2s)
2426
- sage: g.is_strongly_regular(parameters = True ) # not tested (~2s)
2425
+ sage: g = SRG_560_208_72_80() # not tested (~2s)
2426
+ sage: g.is_strongly_regular(parameters = True ) # not tested (~2s)
2427
2427
(560 , 208 , 72 , 80 )
2428
2428
"""
2429
2429
from sage.libs.gap.libgap import libgap
@@ -2662,8 +2662,8 @@ def SRG_1288_792_476_504():
2662
2662
EXAMPLES::
2663
2663
2664
2664
sage: from sage.graphs.strongly_regular_db import SRG_1288_792_476_504
2665
- sage: G = SRG_1288_792_476_504() # long time
2666
- sage: G.is_strongly_regular(parameters = True ) # long time
2665
+ sage: G = SRG_1288_792_476_504() # long time
2666
+ sage: G.is_strongly_regular(parameters = True ) # long time
2667
2667
(1288 , 792 , 476 , 504 )
2668
2668
"""
2669
2669
from sage.coding.golay_code import GolayCode
@@ -3109,48 +3109,48 @@ def _build_small_srg_database():
3109
3109
3110
3110
sage: graphs.strongly_regular_graph(81 , 50 , 31 , 30 )
3111
3111
complement(two- intersection set in PG(4 ,3 )): Graph on 81 vertices
3112
- sage: graphs.strongly_regular_graph(243 , 220 , 199 , 200 ) # long time
3112
+ sage: graphs.strongly_regular_graph(243 , 220 , 199 , 200 ) # long time
3113
3113
two- weight code: [55 , 5 ] linear code over GF(3 ): Graph on 243 vertices
3114
3114
sage: graphs.strongly_regular_graph(256 , 153 , 92 , 90 )
3115
3115
complement(two- intersection set in PG(4 ,4 )): Graph on 256 vertices
3116
3116
sage: graphs.strongly_regular_graph(256 , 170 , 114 , 110 )
3117
3117
complement(two- intersection set in PG(8 ,2 )): Graph on 256 vertices
3118
3118
sage: graphs.strongly_regular_graph(256 , 187 , 138 , 132 )
3119
3119
complement(two- intersection set in PG(8 ,2 )): Graph on 256 vertices
3120
- sage: graphs.strongly_regular_graph(512 , 73 , 12 , 10 ) # not tested (too long)
3120
+ sage: graphs.strongly_regular_graph(512 , 73 , 12 , 10 ) # not tested (too long)
3121
3121
two- weight code: [219 , 9 ] linear code over GF(2 ): Graph on 512 vertices
3122
- sage: graphs.strongly_regular_graph(512 , 219 , 106 , 84 ) # long time
3122
+ sage: graphs.strongly_regular_graph(512 , 219 , 106 , 84 ) # long time
3123
3123
two- intersection set in PG(9 ,2 ): Graph on 512 vertices
3124
- sage: graphs.strongly_regular_graph(512 , 315 , 202 , 180 ) # not tested (too long)
3124
+ sage: graphs.strongly_regular_graph(512 , 315 , 202 , 180 ) # not tested (too long)
3125
3125
two- weight code: [70 , 9 ] linear code over GF(2 ): Graph on 512 vertices
3126
- sage: graphs.strongly_regular_graph(625 , 364 , 213 , 210 ) # long time
3126
+ sage: graphs.strongly_regular_graph(625 , 364 , 213 , 210 ) # long time
3127
3127
complement(two- intersection set in PG(4 ,5 )): Graph on 625 vertices
3128
- sage: graphs.strongly_regular_graph(625 , 416 , 279 , 272 ) # long time
3128
+ sage: graphs.strongly_regular_graph(625 , 416 , 279 , 272 ) # long time
3129
3129
complement(two- intersection set in PG(4 ,5 )): Graph on 625 vertices
3130
- sage: graphs.strongly_regular_graph(625 , 468 , 353 , 342 ) # long time
3130
+ sage: graphs.strongly_regular_graph(625 , 468 , 353 , 342 ) # long time
3131
3131
complement(two- intersection set in PG(4 ,5 )): Graph on 625 vertices
3132
- sage: graphs.strongly_regular_graph(729 , 336 , 153 ,156 ) # not tested (too long)
3132
+ sage: graphs.strongly_regular_graph(729 , 336 , 153 ,156 ) # not tested (too long)
3133
3133
two- intersection set in PG(6 ,3 ): Graph on 729 vertices
3134
- sage: graphs.strongly_regular_graph(729 , 420 , 243 , 240 ) # not tested (too long)
3134
+ sage: graphs.strongly_regular_graph(729 , 420 , 243 , 240 ) # not tested (too long)
3135
3135
complement(two- intersection set in PG(6 ,3 )): Graph on 729 vertices
3136
- sage: graphs.strongly_regular_graph(729 , 448 , 277 , 272 ) # not tested (too long)
3136
+ sage: graphs.strongly_regular_graph(729 , 448 , 277 , 272 ) # not tested (too long)
3137
3137
complement(two- intersection set in PG(6 ,3 )): Graph on 729 vertices
3138
- sage: graphs.strongly_regular_graph(729 , 476 , 313 , 306 ) # not tested (too long)
3138
+ sage: graphs.strongly_regular_graph(729 , 476 , 313 , 306 ) # not tested (too long)
3139
3139
complement(two- intersection set in PG(6 ,3 )): Graph on 729 vertices
3140
- sage: graphs.strongly_regular_graph(729 , 532 , 391 , 380 ) # not tested (too long)
3140
+ sage: graphs.strongly_regular_graph(729 , 532 , 391 , 380 ) # not tested (too long)
3141
3141
complement(two- intersection set in PG(6 ,3 )): Graph on 729 vertices
3142
- sage: graphs.strongly_regular_graph(729 , 560 , 433 , 420 ) # not tested (too long)
3142
+ sage: graphs.strongly_regular_graph(729 , 560 , 433 , 420 ) # not tested (too long)
3143
3143
complement(two- intersection set in PG(6 ,3 )): Graph on 729 vertices
3144
3144
Graph on 729 vertices
3145
- sage: graphs.strongly_regular_graph(729 , 616 , 523 , 506 ) # not tested (too long)
3145
+ sage: graphs.strongly_regular_graph(729 , 616 , 523 , 506 ) # not tested (too long)
3146
3146
complement(two- intersection set in PG(6 ,3 )): Graph on 729 vertices
3147
- sage: graphs.strongly_regular_graph(1024 , 363 , 122 , 132 )# not tested (too long)
3147
+ sage: graphs.strongly_regular_graph(1024 , 363 , 122 , 132 ) # not tested (too long)
3148
3148
two- intersection set in PG(5 ,4 ): Graph on 1024 vertices
3149
- sage: graphs.strongly_regular_graph(1024 , 396 , 148 , 156 )# not tested (too long)
3149
+ sage: graphs.strongly_regular_graph(1024 , 396 , 148 , 156 ) # not tested (too long)
3150
3150
two- intersection set in PG(5 ,4 ): Graph on 1024 vertices
3151
- sage: graphs.strongly_regular_graph(1024 , 429 , 176 , 182 )# not tested (too long)
3151
+ sage: graphs.strongly_regular_graph(1024 , 429 , 176 , 182 ) # not tested (too long)
3152
3152
two- intersection set in PG(5 ,4 ): Graph on 1024 vertices
3153
- sage: graphs.strongly_regular_graph(1024 , 825 , 668 , 650 )# not tested (too long)
3153
+ sage: graphs.strongly_regular_graph(1024 , 825 , 668 , 650 ) # not tested (too long)
3154
3154
complement(two- intersection set in PG(10 ,2 )): Graph on 1024 vertices
3155
3155
"""
3156
3156
from sage.graphs.generators.smallgraphs import McLaughlinGraph
0 commit comments