Skip to content

Commit 5dccca5

Browse files
author
Matthias Koeppe
committed
src/sage/graphs: Fix formatting of doctest tags
1 parent 38b4d02 commit 5dccca5

File tree

3 files changed

+75
-70
lines changed

3 files changed

+75
-70
lines changed

src/sage/graphs/generators/classical_geometries.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1276,8 +1276,8 @@ def CossidentePenttilaGraph(q):
12761276
12771277
TESTS::
12781278
1279-
sage: G = graphs.CossidentePenttilaGraph(7) # optional - gap_package_grape # long time
1280-
sage: G.is_strongly_regular(parameters=True) # optional - gap_package_grape # long time
1279+
sage: G = graphs.CossidentePenttilaGraph(7) # optional - gap_package_grape, long time
1280+
sage: G.is_strongly_regular(parameters=True) # optional - gap_package_grape, long time
12811281
(1376, 150, 2, 18)
12821282
sage: graphs.CossidentePenttilaGraph(2)
12831283
Traceback (most recent call last):

src/sage/graphs/generators/distance_regular.pyx

Lines changed: 37 additions & 32 deletions
Original file line numberDiff line numberDiff line change
@@ -607,13 +607,14 @@ def UstimenkoGraph(const int m, const int q):
607607
608608
TESTS::
609609
610-
sage: G = graphs.UstimenkoGraph(5, 2) # long time
611-
sage: G.order() # long time
610+
sage: # long time
611+
sage: G = graphs.UstimenkoGraph(5, 2)
612+
sage: G.order()
612613
2295
613-
sage: G.is_distance_regular(True) # long time
614+
sage: G.is_distance_regular(True)
614615
([310, 224, None], [None, 1, 35])
615-
sage: G = graphs.UstimenkoGraph(4,3) # long time
616-
sage: G.is_distance_regular(True) # long time
616+
sage: G = graphs.UstimenkoGraph(4,3)
617+
sage: G.is_distance_regular(True)
617618
([390, 243, None], [None, 1, 130])
618619
"""
619620
from sage.graphs.graph_generators import graphs
@@ -1302,13 +1303,14 @@ def GeneralisedDodecagonGraph(const int s, const int t):
13021303
13031304
EXAMPLES::
13041305
1305-
sage: G = graphs.GeneralisedDodecagonGraph(1, 5) # optional - gap_package_atlasrep internet
1306-
sage: G.is_distance_regular(True) # optional - gap_package_atlasrep internet
1306+
sage: # optional - gap_package_atlasrep internet
1307+
sage: G = graphs.GeneralisedDodecagonGraph(1, 5)
1308+
sage: G.is_distance_regular(True)
13071309
([6, 5, 5, 5, 5, 5, None], [None, 1, 1, 1, 1, 1, 6])
1308-
sage: H = graphs.GeneralisedDodecagonGraph(5, 1) # optional - gap_package_atlasrep internet
1309-
sage: H.order() # optional - gap_package_atlasrep internet
1310+
sage: H = graphs.GeneralisedDodecagonGraph(5, 1)
1311+
sage: H.order()
13101312
23436
1311-
sage: H.is_distance_regular(True) # not tested (6 min), optional - gap_package_atlasrep internet
1313+
sage: H.is_distance_regular(True) # not tested (6 min)
13121314
([10, 5, 5, 5, 5, 5, None], [None, 1, 1, 1, 1, 1, 2])
13131315
13141316
.. NOTE::
@@ -1326,29 +1328,31 @@ def GeneralisedDodecagonGraph(const int s, const int t):
13261328
13271329
Test all graphs of order `(1, q)`::
13281330
1329-
sage: G = graphs.GeneralisedDodecagonGraph(1, 4) # optional - gap_package_atlasrep internet
1330-
sage: G.is_distance_regular(True) # optional - gap_package_atlasrep internet
1331+
sage: # optional - gap_package_atlasrep internet
1332+
sage: G = graphs.GeneralisedDodecagonGraph(1, 4)
1333+
sage: G.is_distance_regular(True)
13311334
([5, 4, 4, 4, 4, 4, None], [None, 1, 1, 1, 1, 1, 5])
1332-
sage: G = graphs.GeneralisedDodecagonGraph(1, 3) # optional - gap_package_atlasrep internet
1333-
sage: G.is_distance_regular(True) # optional - gap_package_atlasrep internet
1335+
sage: G = graphs.GeneralisedDodecagonGraph(1, 3)
1336+
sage: G.is_distance_regular(True)
13341337
([4, 3, 3, 3, 3, 3, None], [None, 1, 1, 1, 1, 1, 4])
1335-
sage: G = graphs.GeneralisedDodecagonGraph(1, 2) # optional - gap_package_atlasrep internet
1336-
sage: G.is_distance_regular(True) # optional - gap_package_atlasrep internet
1338+
sage: G = graphs.GeneralisedDodecagonGraph(1, 2)
1339+
sage: G.is_distance_regular(True)
13371340
([3, 2, 2, 2, 2, 2, None], [None, 1, 1, 1, 1, 1, 3])
1338-
sage: G = graphs.GeneralisedDodecagonGraph(1, 1) # optional - gap_package_atlasrep internet
1339-
sage: G.is_distance_regular(True) # optional - gap_package_atlasrep internet
1341+
sage: G = graphs.GeneralisedDodecagonGraph(1, 1)
1342+
sage: G.is_distance_regular(True)
13401343
([2, 1, 1, 1, 1, 1, None], [None, 1, 1, 1, 1, 1, 2])
13411344
13421345
Now test all graphs of order `(q, 1)`::
13431346
1344-
sage: G = graphs.GeneralisedDodecagonGraph(4, 1) # optional - gap_package_atlasrep internet
1345-
sage: G.is_distance_regular(True) # optional - gap_package_atlasrep internet
1347+
sage: # optional - gap_package_atlasrep internet
1348+
sage: G = graphs.GeneralisedDodecagonGraph(4, 1)
1349+
sage: G.is_distance_regular(True)
13461350
([8, 4, 4, 4, 4, 4, None], [None, 1, 1, 1, 1, 1, 2])
1347-
sage: G = graphs.GeneralisedDodecagonGraph(3, 1) # optional - gap_package_atlasrep internet
1348-
sage: G.is_distance_regular(True) # optional - gap_package_atlasrep internet
1351+
sage: G = graphs.GeneralisedDodecagonGraph(3, 1)
1352+
sage: G.is_distance_regular(True)
13491353
([6, 3, 3, 3, 3, 3, None], [None, 1, 1, 1, 1, 1, 2])
1350-
sage: G = graphs.GeneralisedDodecagonGraph(2, 1) # optional - gap_package_atlasrep internet
1351-
sage: G.is_distance_regular(True) # optional - gap_package_atlasrep internet
1354+
sage: G = graphs.GeneralisedDodecagonGraph(2, 1)
1355+
sage: G.is_distance_regular(True)
13521356
([4, 2, 2, 2, 2, 2, None], [None, 1, 1, 1, 1, 1, 2])
13531357
"""
13541358
from sage.arith.misc import is_prime_power
@@ -1539,17 +1543,18 @@ def GeneralisedHexagonGraph(const int s, const int t):
15391543
15401544
TESTS::
15411545
1542-
sage: G = graphs.GeneralisedHexagonGraph(4, 4) # optional - gap_package_atlasrep internet
1543-
sage: G.is_distance_regular(True) # optional - gap_package_atlasrep internet
1546+
sage: # optional - gap_package_atlasrep internet
1547+
sage: G = graphs.GeneralisedHexagonGraph(4, 4)
1548+
sage: G.is_distance_regular(True)
15441549
([20, 16, 16, None], [None, 1, 1, 5])
1545-
sage: G = graphs.GeneralisedHexagonGraph(3, 3) # optional - gap_package_atlasrep internet
1546-
sage: G.is_distance_regular(True) # optional - gap_package_atlasrep internet
1550+
sage: G = graphs.GeneralisedHexagonGraph(3, 3)
1551+
sage: G.is_distance_regular(True)
15471552
([12, 9, 9, None], [None, 1, 1, 4])
1548-
sage: G = graphs.GeneralisedHexagonGraph(2, 2) # optional - gap_package_atlasrep internet
1549-
sage: G.is_distance_regular(True) # optional - gap_package_atlasrep internet
1553+
sage: G = graphs.GeneralisedHexagonGraph(2, 2)
1554+
sage: G.is_distance_regular(True)
15501555
([6, 4, 4, None], [None, 1, 1, 3])
1551-
sage: G = graphs.GeneralisedHexagonGraph(2, 8) # optional - gap_package_atlasrep internet
1552-
sage: G.is_distance_regular(True) # optional - gap_package_atlasrep internet
1556+
sage: G = graphs.GeneralisedHexagonGraph(2, 8)
1557+
sage: G.is_distance_regular(True)
15531558
([18, 16, 16, None], [None, 1, 1, 9])
15541559
"""
15551560
from sage.arith.misc import is_prime_power

src/sage/graphs/strongly_regular_db.pyx

Lines changed: 36 additions & 36 deletions
Original file line numberDiff line numberDiff line change
@@ -1011,9 +1011,9 @@ def is_polhill(int v, int k, int l, int mu):
10111011
sage: from sage.graphs.strongly_regular_db import is_polhill
10121012
sage: t = is_polhill(1024, 231, 38, 56); t
10131013
[<cyfunction is_polhill.<locals>.<lambda> at ...>]
1014-
sage: g = t[0](*t[1:]); g # not tested (too long)
1014+
sage: g = t[0](*t[1:]); g # not tested (too long)
10151015
Graph on 1024 vertices
1016-
sage: g.is_strongly_regular(parameters=True) # not tested (too long)
1016+
sage: g.is_strongly_regular(parameters=True) # not tested (too long)
10171017
(1024, 231, 38, 56)
10181018
sage: t = is_polhill(1024, 264, 56, 72); t
10191019
[<cyfunction is_polhill.<locals>.<lambda> at ...>]
@@ -1496,7 +1496,7 @@ def is_twograph_descendant_of_srg(int v, int k0, int l, int mu):
14961496

14971497
sage: graphs.strongly_regular_graph(279, 150, 85, 75, existence=True)
14981498
True
1499-
sage: graphs.strongly_regular_graph(279, 150, 85, 75).is_strongly_regular(parameters=True) # optional - gap_package_design internet
1499+
sage: graphs.strongly_regular_graph(279, 150, 85, 75).is_strongly_regular(parameters=True) # optional - gap_package_design internet
15001500
(279, 150, 85, 75)
15011501
"""
15021502
cdef int b, k, s
@@ -1642,7 +1642,7 @@ def is_switch_OA_srg(int v, int k, int l, int mu):
16421642

16431643
EXAMPLES::
16441644

1645-
sage: graphs.strongly_regular_graph(170, 78, 35, 36) # indirect doctest
1645+
sage: graphs.strongly_regular_graph(170, 78, 35, 36) # indirect doctest
16461646
Graph on 170 vertices
16471647

16481648
TESTS::
@@ -1909,8 +1909,8 @@ def SRG_100_44_18_20():
19091909
EXAMPLES::
19101910

19111911
sage: from sage.graphs.strongly_regular_db import SRG_100_44_18_20
1912-
sage: G = SRG_100_44_18_20() # long time
1913-
sage: G.is_strongly_regular(parameters=True) # long time
1912+
sage: G = SRG_100_44_18_20() # long time
1913+
sage: G.is_strongly_regular(parameters=True) # long time
19141914
(100, 44, 18, 20)
19151915
"""
19161916
L = ['100', '110', '130', '140', '200', '230', '240', '300', '310', '320',
@@ -1931,8 +1931,8 @@ def SRG_100_45_20_20():
19311931
EXAMPLES::
19321932

19331933
sage: from sage.graphs.strongly_regular_db import SRG_100_45_20_20
1934-
sage: G = SRG_100_45_20_20() # long time
1935-
sage: G.is_strongly_regular(parameters=True) # long time
1934+
sage: G = SRG_100_45_20_20() # long time
1935+
sage: G.is_strongly_regular(parameters=True) # long time
19361936
(100, 45, 20, 20)
19371937
"""
19381938
L = ['120', '140', '200', '210', '201', '401', '411', '321', '002', '012',
@@ -1985,8 +1985,8 @@ def SRG_120_77_52_44():
19851985
EXAMPLES::
19861986

19871987
sage: from sage.graphs.strongly_regular_db import SRG_120_77_52_44
1988-
sage: G = SRG_120_77_52_44() # optional - gap_package_design
1989-
sage: G.is_strongly_regular(parameters=True) # optional - gap_package_design
1988+
sage: G = SRG_120_77_52_44() # optional - gap_package_design
1989+
sage: G.is_strongly_regular(parameters=True) # optional - gap_package_design
19901990
(120, 77, 52, 44)
19911991
"""
19921992
from sage.combinat.designs.block_design import WittDesign
@@ -2290,8 +2290,8 @@ def SRG_280_135_70_60():
22902290
EXAMPLES::
22912291

22922292
sage: from sage.graphs.strongly_regular_db import SRG_280_135_70_60
2293-
sage: g=SRG_280_135_70_60() # long time # optional - internet
2294-
sage: g.is_strongly_regular(parameters=True) # long time # optional - internet
2293+
sage: g=SRG_280_135_70_60() # long time, optional - internet
2294+
sage: g.is_strongly_regular(parameters=True) # long time, optional - internet
22952295
(280, 135, 70, 60)
22962296
"""
22972297
from sage.libs.gap.libgap import libgap
@@ -2398,8 +2398,8 @@ def SRG_416_100_36_20():
23982398
EXAMPLES::
23992399

24002400
sage: from sage.graphs.strongly_regular_db import SRG_416_100_36_20
2401-
sage: g = SRG_416_100_36_20() # long time # optional - internet
2402-
sage: g.is_strongly_regular(parameters=True) # long time # optional - internet
2401+
sage: g = SRG_416_100_36_20() # long time, optional - internet
2402+
sage: g.is_strongly_regular(parameters=True) # long time, optional - internet
24032403
(416, 100, 36, 20)
24042404
"""
24052405
from sage.libs.gap.libgap import libgap
@@ -2422,8 +2422,8 @@ def SRG_560_208_72_80():
24222422
EXAMPLES::
24232423

24242424
sage: from sage.graphs.strongly_regular_db import SRG_560_208_72_80
2425-
sage: g = SRG_560_208_72_80() # not tested (~2s)
2426-
sage: g.is_strongly_regular(parameters=True) # not tested (~2s)
2425+
sage: g = SRG_560_208_72_80() # not tested (~2s)
2426+
sage: g.is_strongly_regular(parameters=True) # not tested (~2s)
24272427
(560, 208, 72, 80)
24282428
"""
24292429
from sage.libs.gap.libgap import libgap
@@ -2662,8 +2662,8 @@ def SRG_1288_792_476_504():
26622662
EXAMPLES::
26632663

26642664
sage: from sage.graphs.strongly_regular_db import SRG_1288_792_476_504
2665-
sage: G = SRG_1288_792_476_504() # long time
2666-
sage: G.is_strongly_regular(parameters=True) # long time
2665+
sage: G = SRG_1288_792_476_504() # long time
2666+
sage: G.is_strongly_regular(parameters=True) # long time
26672667
(1288, 792, 476, 504)
26682668
"""
26692669
from sage.coding.golay_code import GolayCode
@@ -3109,48 +3109,48 @@ def _build_small_srg_database():
31093109

31103110
sage: graphs.strongly_regular_graph(81, 50, 31, 30)
31113111
complement(two-intersection set in PG(4,3)): Graph on 81 vertices
3112-
sage: graphs.strongly_regular_graph(243, 220, 199, 200) # long time
3112+
sage: graphs.strongly_regular_graph(243, 220, 199, 200) # long time
31133113
two-weight code: [55, 5] linear code over GF(3): Graph on 243 vertices
31143114
sage: graphs.strongly_regular_graph(256, 153, 92, 90)
31153115
complement(two-intersection set in PG(4,4)): Graph on 256 vertices
31163116
sage: graphs.strongly_regular_graph(256, 170, 114, 110)
31173117
complement(two-intersection set in PG(8,2)): Graph on 256 vertices
31183118
sage: graphs.strongly_regular_graph(256, 187, 138, 132)
31193119
complement(two-intersection set in PG(8,2)): Graph on 256 vertices
3120-
sage: graphs.strongly_regular_graph(512, 73, 12, 10) # not tested (too long)
3120+
sage: graphs.strongly_regular_graph(512, 73, 12, 10) # not tested (too long)
31213121
two-weight code: [219, 9] linear code over GF(2): Graph on 512 vertices
3122-
sage: graphs.strongly_regular_graph(512, 219, 106, 84) # long time
3122+
sage: graphs.strongly_regular_graph(512, 219, 106, 84) # long time
31233123
two-intersection set in PG(9,2): Graph on 512 vertices
3124-
sage: graphs.strongly_regular_graph(512, 315, 202, 180) # not tested (too long)
3124+
sage: graphs.strongly_regular_graph(512, 315, 202, 180) # not tested (too long)
31253125
two-weight code: [70, 9] linear code over GF(2): Graph on 512 vertices
3126-
sage: graphs.strongly_regular_graph(625, 364, 213, 210) # long time
3126+
sage: graphs.strongly_regular_graph(625, 364, 213, 210) # long time
31273127
complement(two-intersection set in PG(4,5)): Graph on 625 vertices
3128-
sage: graphs.strongly_regular_graph(625, 416, 279, 272) # long time
3128+
sage: graphs.strongly_regular_graph(625, 416, 279, 272) # long time
31293129
complement(two-intersection set in PG(4,5)): Graph on 625 vertices
3130-
sage: graphs.strongly_regular_graph(625, 468, 353, 342) # long time
3130+
sage: graphs.strongly_regular_graph(625, 468, 353, 342) # long time
31313131
complement(two-intersection set in PG(4,5)): Graph on 625 vertices
3132-
sage: graphs.strongly_regular_graph(729, 336, 153,156) # not tested (too long)
3132+
sage: graphs.strongly_regular_graph(729, 336, 153,156) # not tested (too long)
31333133
two-intersection set in PG(6,3): Graph on 729 vertices
3134-
sage: graphs.strongly_regular_graph(729, 420, 243, 240) # not tested (too long)
3134+
sage: graphs.strongly_regular_graph(729, 420, 243, 240) # not tested (too long)
31353135
complement(two-intersection set in PG(6,3)): Graph on 729 vertices
3136-
sage: graphs.strongly_regular_graph(729, 448, 277, 272) # not tested (too long)
3136+
sage: graphs.strongly_regular_graph(729, 448, 277, 272) # not tested (too long)
31373137
complement(two-intersection set in PG(6,3)): Graph on 729 vertices
3138-
sage: graphs.strongly_regular_graph(729, 476, 313, 306) # not tested (too long)
3138+
sage: graphs.strongly_regular_graph(729, 476, 313, 306) # not tested (too long)
31393139
complement(two-intersection set in PG(6,3)): Graph on 729 vertices
3140-
sage: graphs.strongly_regular_graph(729, 532, 391, 380) # not tested (too long)
3140+
sage: graphs.strongly_regular_graph(729, 532, 391, 380) # not tested (too long)
31413141
complement(two-intersection set in PG(6,3)): Graph on 729 vertices
3142-
sage: graphs.strongly_regular_graph(729, 560, 433, 420) # not tested (too long)
3142+
sage: graphs.strongly_regular_graph(729, 560, 433, 420) # not tested (too long)
31433143
complement(two-intersection set in PG(6,3)): Graph on 729 vertices
31443144
Graph on 729 vertices
3145-
sage: graphs.strongly_regular_graph(729, 616, 523, 506) # not tested (too long)
3145+
sage: graphs.strongly_regular_graph(729, 616, 523, 506) # not tested (too long)
31463146
complement(two-intersection set in PG(6,3)): Graph on 729 vertices
3147-
sage: graphs.strongly_regular_graph(1024, 363, 122, 132)# not tested (too long)
3147+
sage: graphs.strongly_regular_graph(1024, 363, 122, 132) # not tested (too long)
31483148
two-intersection set in PG(5,4): Graph on 1024 vertices
3149-
sage: graphs.strongly_regular_graph(1024, 396, 148, 156)# not tested (too long)
3149+
sage: graphs.strongly_regular_graph(1024, 396, 148, 156) # not tested (too long)
31503150
two-intersection set in PG(5,4): Graph on 1024 vertices
3151-
sage: graphs.strongly_regular_graph(1024, 429, 176, 182)# not tested (too long)
3151+
sage: graphs.strongly_regular_graph(1024, 429, 176, 182) # not tested (too long)
31523152
two-intersection set in PG(5,4): Graph on 1024 vertices
3153-
sage: graphs.strongly_regular_graph(1024, 825, 668, 650)# not tested (too long)
3153+
sage: graphs.strongly_regular_graph(1024, 825, 668, 650) # not tested (too long)
31543154
complement(two-intersection set in PG(10,2)): Graph on 1024 vertices
31553155
"""
31563156
from sage.graphs.generators.smallgraphs import McLaughlinGraph

0 commit comments

Comments
 (0)