@@ -453,7 +453,7 @@ def _element_constructor_(self, G, pi=None, check=True):
453453
454454 sage: G = PermutationGroup([[(1,3),(5,7)]], domain=[1,3,5,7])
455455 sage: A(G, ([1,3], [5,7]))
456- {((1,2)(3,4),): ({1, 2}, {3, 4})}
456+ E_2(X*Y)
457457
458458 Test that errors are raised on some possible misuses::
459459
@@ -549,9 +549,9 @@ def _rename(self, n):
549549 sage: A(CyclicPermutationGroup(4), {1: range(1, 5)})
550550 C_4(Y)
551551 sage: A(DihedralGroup(4), {0: range(1, 5)})
552- P_4(X )
552+ E_2(E_2(X) )
553553 sage: A(DihedralGroup(4), {1: range(1, 5)})
554- P_4(Y )
554+ E_2(E_2(Y) )
555555 sage: A(AlternatingGroup(4), {0: range(1, 5)})
556556 Eo_4(X)
557557 sage: A(AlternatingGroup(4), {1: range(1, 5)})
@@ -722,11 +722,7 @@ def _an_element_(self):
722722
723723 sage: A = AtomicSpecies("X, Y")
724724 sage: a = A.an_element(); a
725- {((1,2)(3,4),): ({1, 2}, {3, 4})}
726-
727- sage: a.rename("E_2(XY)")
728- sage: a
729- E_2(XY)
725+ E_2(X*Y)
730726 """
731727 G = PermutationGroup ([[(2 * s + 1 , 2 * s + 2 ) for s in range (self ._arity )]])
732728 m = {s : [2 * s + 1 , 2 * s + 2 ] for s in range (self ._arity )}
@@ -850,7 +846,7 @@ class MolecularSpecies(IndexedFreeAbelianMonoid):
850846 sage: M = MolecularSpecies("X,Y")
851847 sage: G = PermutationGroup([[(1,2),(3,4)], [(5,6)]])
852848 sage: M(G, {0: [5,6], 1: [1,2,3,4]})
853- E_2(X)*{((1,2)(3,4),): ({}, {1, 2, 3, 4})}
849+ E_2(X)*E_2(Y^2)
854850 """
855851 @staticmethod
856852 def __classcall__ (cls , names ):
@@ -961,7 +957,7 @@ def _element_constructor_(self, G, pi=None, check=True):
961957
962958 sage: G = PermutationGroup([[(2,3),(4,5)]], domain=[2,3,4,5])
963959 sage: M(G, {0: [2, 3], 1: [4, 5]})
964- E_2(XY )
960+ E_2(X*Y )
965961
966962 sage: X = SetPartitions(4, 2)
967963 sage: a = lambda g, x: SetPartition([[g(e) for e in b] for b in x])
@@ -972,7 +968,7 @@ def _element_constructor_(self, G, pi=None, check=True):
972968
973969 sage: G = PermutationGroup([[(1,3),(5,7)]], domain=[1,3,5,7])
974970 sage: M(G, ([1,3], [5,7]))
975- E_2(XY )
971+ E_2(X*Y )
976972
977973 sage: G = PermutationGroup([[(1,2), (3,4,5,6)]])
978974 sage: a = M(G, {0:[1,2], 1:[3,4,5,6]})
@@ -1254,7 +1250,7 @@ def permutation_group(self):
12541250 sage: M = MolecularSpecies("X,Y")
12551251 sage: G = PermutationGroup([[(1,2),(3,4)], [(5,6)]])
12561252 sage: A = M(G, {0: [5,6], 1: [1,2,3,4]}); A
1257- E_2(X)*{((1,2)(3,4),): ({}, {1, 2, 3, 4})}
1253+ E_2(X)*E_2(Y^2)
12581254 sage: A.permutation_group()
12591255 (Permutation Group with generators [(3,4)(5,6), (1,2)],
12601256 (frozenset({1, 2}), frozenset({3, 4, 5, 6})))
@@ -1279,7 +1275,7 @@ def permutation_group(self):
12791275 sage: G = PermutationGroup([[(1,2),(3,4)], [(5,6)]])
12801276 sage: A = M(G, {0: [5,6], 1: [1,2,3,4]})
12811277 sage: A * B
1282- E_2(X)*C_3(X)*{((1,2)(3,4),): ({}, {1, 2, 3, 4})}
1278+ E_2(X)*C_3(X)*E_2(Y^2)
12831279 sage: (A*B).permutation_group()
12841280 (Permutation Group with generators [(6,7)(8,9), (3,4,5), (1,2)],
12851281 (frozenset({1, 2, 3, 4, 5}), frozenset({6, 7, 8, 9})))
@@ -1657,7 +1653,7 @@ def tilde(self):
16571653 sage: P.<X,Y> = PolynomialSpecies(QQ)
16581654 sage: E2 = PolynomialSpecies(QQ, "X")(SymmetricGroup(2))
16591655 sage: E2(X*Y).tilde()
1660- 2*E_2(XY )
1656+ 2*E_2(X*Y )
16611657 """
16621658 P = self .parent ()
16631659 M = P ._indices
@@ -1781,7 +1777,7 @@ def _compose_with_singletons(self, names, args):
17811777 sage: P = PolynomialSpecies(ZZ, "X")
17821778 sage: C4 = P(CyclicPermutationGroup(4))
17831779 sage: C4._compose_with_singletons("X, Y", [[2, 2]])
1784- E_2(XY ) + X^2*Y^2
1780+ E_2(X*Y ) + X^2*Y^2
17851781
17861782 sage: P = PolynomialSpecies(ZZ, ["X", "Y"])
17871783 sage: F = P(PermutationGroup([[(1,2,3), (4,5,6)]]), {0: [1,2,3], 1: [4,5,6]})
@@ -1874,7 +1870,7 @@ def _compose_with_weighted_singletons(self, names, multiplicities, degrees):
18741870 Exercise (2.5.17) in [BLL1998]_::
18751871
18761872 sage: C4._compose_with_weighted_singletons(["X", "Y"], [1, 1], [[2, 2]])
1877- E_2(XY ) + X^2*Y^2
1873+ E_2(X*Y ) + X^2*Y^2
18781874 sage: C4._compose_with_weighted_singletons(["X", "Y"], [1, 1], [[3, 1]])
18791875 X^3*Y
18801876 sage: C4._compose_with_weighted_singletons(["X", "Y"], [1, 1], [[4, 0]])
@@ -1883,7 +1879,7 @@ def _compose_with_weighted_singletons(self, names, multiplicities, degrees):
18831879 Equation (4.60) in [ALL2002]_::
18841880
18851881 sage: C4._compose_with_weighted_singletons(["X", "Y"], [1, -1], [[2, 2]])
1886- -E_2(XY ) + 2*X^2*Y^2
1882+ -E_2(X*Y ) + 2*X^2*Y^2
18871883
18881884 A bivariate example::
18891885
@@ -1984,7 +1980,7 @@ def __call__(self, *args):
19841980 E_2(X) + X*Y + E_2(Y)
19851981
19861982 sage: E2(X*Y)(E2(X), E2(Y))
1987- {((7,8), (5,6), (3,4), (1,2), (1,3)(2,4)(5,7)(6,8)): ({1, 2, 3, 4}, {5, 6, 7, 8})}
1983+ E_2(E_2(X)*E_2(Y))
19881984
19891985 sage: R.<q> = QQ[]
19901986 sage: P = PolynomialSpecies(R, ["X"])
@@ -2193,7 +2189,7 @@ def _element_constructor_(self, G, pi=None, check=True):
21932189 sage: X = SetPartitions(4, 2)
21942190 sage: a = lambda g, x: SetPartition([[g(e) for e in b] for b in x])
21952191 sage: P((X, a, 'left'), {0: [1,2], 1: [3,4]})
2196- E_2(X)*E_2(Y) + X^2*E_2(Y) + E_2(XY ) + Y^2*E_2(X)
2192+ E_2(X)*E_2(Y) + X^2*E_2(Y) + E_2(X*Y ) + Y^2*E_2(X)
21972193
21982194 sage: P = PolynomialSpecies(ZZ, ["X"])
21992195 sage: X = SetPartitions(4, 2)
0 commit comments