Skip to content

Commit 61654eb

Browse files
author
Matthias Koeppe
committed
./sage -fixdoctests --distribution 'sagemath-modules[pari]' --only-tags --probe all src/sage/rings/function_field/
1 parent 2f27e8c commit 61654eb

File tree

7 files changed

+159
-163
lines changed

7 files changed

+159
-163
lines changed

src/sage/rings/function_field/differential.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -151,7 +151,7 @@ def _latex_(self):
151151
152152
sage: # needs sage.rings.finite_rings
153153
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
154-
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
154+
sage: L.<y> = K.extension(Y^3 + x + x^3*Y) # needs sage.rings.function_field
155155
sage: w = y.differential()
156156
sage: latex(w)
157157
\left( x y^{2} + \frac{1}{x} y \right)\, dx
@@ -444,7 +444,7 @@ def residue(self, place):
444444
sage: w = 1/f * f.differential()
445445
sage: d = f.divisor()
446446
sage: s = d.support()
447-
sage: sum([w.residue(p).trace() for p in s])
447+
sage: sum([w.residue(p).trace() for p in s]) # needs sage.rings.function_field
448448
0
449449
450450
and in an extension field::
@@ -559,7 +559,7 @@ def cartier(self):
559559
sage: F.<x> = FunctionField(GF(4))
560560
sage: f = x/(x^2 + x + 1)
561561
sage: w = 1/f*f.differential()
562-
sage: w.cartier() == w
562+
sage: w.cartier() == w # needs sage.rings.function_field
563563
True
564564
"""
565565
W = self.parent()

src/sage/rings/function_field/element.pyx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -569,7 +569,7 @@ cdef class FunctionFieldElement(FieldElement):
569569
::
570570
571571
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[] # needs sage.rings.finite_rings
572-
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x) # needs sage.rings.finite_rings
572+
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x) # needs sage.rings.finite_rings sage.rings.function_field
573573
sage: (x/y).zeros() # needs sage.modules sage.rings.finite_rings sage.rings.function_field
574574
[Place (x, x*y)]
575575
"""

src/sage/rings/function_field/function_field.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -129,7 +129,7 @@
129129
sage: TestSuite(L).run(max_runs=8) # long time (25s) # needs sage.rings.function_field sage.rings.number_field
130130
sage: TestSuite(M).run(max_runs=8) # long time (35s) # needs sage.rings.finite_rings sage.rings.function_field
131131
sage: TestSuite(N).run(max_runs=8, skip='_test_derivation') # long time (15s), needs sage.rings.finite_rings
132-
sage: TestSuite(O).run() # needs sage.rings.function_field
132+
sage: TestSuite(O).run()
133133
sage: TestSuite(R).run() # needs sage.rings.finite_rings sage.rings.function_field
134134
sage: TestSuite(S).run() # long time (4s) # needs sage.rings.finite_rings sage.rings.function_field
135135

src/sage/rings/function_field/order.py

Lines changed: 16 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -30,35 +30,35 @@
3030
`O` and one maximal infinite order `O_\infty`. There are other non-maximal
3131
orders such as equation orders::
3232
33-
sage: # needs sage.rings.finite_rings
33+
sage: # needs sage.rings.function_field
3434
sage: K.<x> = FunctionField(GF(3)); R.<y> = K[]
35-
sage: L.<y> = K.extension(y^3 - y - x) # needs sage.rings.function_field
36-
sage: O = L.equation_order() # needs sage.rings.function_field
37-
sage: 1/y in O # needs sage.rings.function_field
35+
sage: L.<y> = K.extension(y^3 - y - x)
36+
sage: O = L.equation_order()
37+
sage: 1/y in O
3838
False
39-
sage: x/y in O # needs sage.rings.function_field
39+
sage: x/y in O
4040
True
4141
4242
Sage provides an extensive functionality for computations in maximal orders of
4343
function fields. For example, you can decompose a prime ideal of a rational
4444
function field in an extension::
4545
46-
sage: # needs sage.rings.finite_rings
4746
sage: K.<x> = FunctionField(GF(2)); _.<t> = K[]
4847
sage: o = K.maximal_order()
4948
sage: p = o.ideal(x + 1)
50-
sage: p.is_prime()
49+
sage: p.is_prime() # needs sage.libs.pari
5150
True
5251
53-
sage: F.<y> = K.extension(t^3 - x^2*(x^2 + x + 1)^2) # needs sage.rings.finite_rings sage.rings.function_field
54-
sage: O = F.maximal_order() # needs sage.rings.finite_rings sage.rings.function_field
55-
sage: O.decomposition(p) # needs sage.rings.finite_rings sage.rings.function_field
52+
sage: # needs sage.rings.function_field
53+
sage: F.<y> = K.extension(t^3 - x^2*(x^2 + x + 1)^2)
54+
sage: O = F.maximal_order()
55+
sage: O.decomposition(p)
5656
[(Ideal (x + 1, y + 1) of Maximal order
5757
of Function field in y defined by y^3 + x^6 + x^4 + x^2, 1, 1),
5858
(Ideal (x + 1, (1/(x^3 + x^2 + x))*y^2 + y + 1) of Maximal order
5959
of Function field in y defined by y^3 + x^6 + x^4 + x^2, 2, 1)]
6060
61-
sage: # needs sage.rings.finite_rings sage.rings.function_field
61+
sage: # needs sage.rings.function_field
6262
sage: p1, relative_degree,ramification_index = O.decomposition(p)[1]
6363
sage: p1.parent()
6464
Monoid of ideals of Maximal order of Function field in y
@@ -71,12 +71,12 @@
7171
When the base constant field is the algebraic field `\QQbar`, the only prime ideals
7272
of the maximal order of the rational function field are linear polynomials. ::
7373
74-
sage: # needs sage.rings.number_field
74+
sage: # needs sage.rings.function_field sage.rings.number_field
7575
sage: K.<x> = FunctionField(QQbar)
7676
sage: R.<y> = K[]
77-
sage: L.<y> = K.extension(y^2 - (x^3-x^2)) # needs sage.rings.function_field
77+
sage: L.<y> = K.extension(y^2 - (x^3-x^2))
7878
sage: p = K.maximal_order().ideal(x)
79-
sage: L.maximal_order().decomposition(p) # needs sage.rings.function_field
79+
sage: L.maximal_order().decomposition(p)
8080
[(Ideal (1/x*y - I) of Maximal order of Function field in y defined by y^2 - x^3 + x^2,
8181
1,
8282
1),
@@ -274,8 +274,8 @@ def _repr_(self):
274274
Maximal infinite order of Rational function field in y over Rational Field
275275
276276
sage: K.<x> = FunctionField(GF(2)); R.<t> = PolynomialRing(K)
277-
sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2) # needs sage.rings.finite_rings sage.rings.function_field
278-
sage: F.maximal_order_infinite() # needs sage.modules sage.rings.finite_rings sage.rings.function_field
277+
sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2) # needs sage.rings.function_field
278+
sage: F.maximal_order_infinite() # needs sage.modules sage.rings.function_field
279279
Maximal infinite order of Function field in y defined by y^3 + x^6 + x^4 + x^2
280280
"""
281281
return "Maximal infinite order of %s"%(self.function_field(),)

0 commit comments

Comments
 (0)