|
30 | 30 | `O` and one maximal infinite order `O_\infty`. There are other non-maximal
|
31 | 31 | orders such as equation orders::
|
32 | 32 |
|
33 |
| - sage: # needs sage.rings.finite_rings |
| 33 | + sage: # needs sage.rings.function_field |
34 | 34 | sage: K.<x> = FunctionField(GF(3)); R.<y> = K[]
|
35 |
| - sage: L.<y> = K.extension(y^3 - y - x) # needs sage.rings.function_field |
36 |
| - sage: O = L.equation_order() # needs sage.rings.function_field |
37 |
| - sage: 1/y in O # needs sage.rings.function_field |
| 35 | + sage: L.<y> = K.extension(y^3 - y - x) |
| 36 | + sage: O = L.equation_order() |
| 37 | + sage: 1/y in O |
38 | 38 | False
|
39 |
| - sage: x/y in O # needs sage.rings.function_field |
| 39 | + sage: x/y in O |
40 | 40 | True
|
41 | 41 |
|
42 | 42 | Sage provides an extensive functionality for computations in maximal orders of
|
43 | 43 | function fields. For example, you can decompose a prime ideal of a rational
|
44 | 44 | function field in an extension::
|
45 | 45 |
|
46 |
| - sage: # needs sage.rings.finite_rings |
47 | 46 | sage: K.<x> = FunctionField(GF(2)); _.<t> = K[]
|
48 | 47 | sage: o = K.maximal_order()
|
49 | 48 | sage: p = o.ideal(x + 1)
|
50 |
| - sage: p.is_prime() |
| 49 | + sage: p.is_prime() # needs sage.libs.pari |
51 | 50 | True
|
52 | 51 |
|
53 |
| - sage: F.<y> = K.extension(t^3 - x^2*(x^2 + x + 1)^2) # needs sage.rings.finite_rings sage.rings.function_field |
54 |
| - sage: O = F.maximal_order() # needs sage.rings.finite_rings sage.rings.function_field |
55 |
| - sage: O.decomposition(p) # needs sage.rings.finite_rings sage.rings.function_field |
| 52 | + sage: # needs sage.rings.function_field |
| 53 | + sage: F.<y> = K.extension(t^3 - x^2*(x^2 + x + 1)^2) |
| 54 | + sage: O = F.maximal_order() |
| 55 | + sage: O.decomposition(p) |
56 | 56 | [(Ideal (x + 1, y + 1) of Maximal order
|
57 | 57 | of Function field in y defined by y^3 + x^6 + x^4 + x^2, 1, 1),
|
58 | 58 | (Ideal (x + 1, (1/(x^3 + x^2 + x))*y^2 + y + 1) of Maximal order
|
59 | 59 | of Function field in y defined by y^3 + x^6 + x^4 + x^2, 2, 1)]
|
60 | 60 |
|
61 |
| - sage: # needs sage.rings.finite_rings sage.rings.function_field |
| 61 | + sage: # needs sage.rings.function_field |
62 | 62 | sage: p1, relative_degree,ramification_index = O.decomposition(p)[1]
|
63 | 63 | sage: p1.parent()
|
64 | 64 | Monoid of ideals of Maximal order of Function field in y
|
|
71 | 71 | When the base constant field is the algebraic field `\QQbar`, the only prime ideals
|
72 | 72 | of the maximal order of the rational function field are linear polynomials. ::
|
73 | 73 |
|
74 |
| - sage: # needs sage.rings.number_field |
| 74 | + sage: # needs sage.rings.function_field sage.rings.number_field |
75 | 75 | sage: K.<x> = FunctionField(QQbar)
|
76 | 76 | sage: R.<y> = K[]
|
77 |
| - sage: L.<y> = K.extension(y^2 - (x^3-x^2)) # needs sage.rings.function_field |
| 77 | + sage: L.<y> = K.extension(y^2 - (x^3-x^2)) |
78 | 78 | sage: p = K.maximal_order().ideal(x)
|
79 |
| - sage: L.maximal_order().decomposition(p) # needs sage.rings.function_field |
| 79 | + sage: L.maximal_order().decomposition(p) |
80 | 80 | [(Ideal (1/x*y - I) of Maximal order of Function field in y defined by y^2 - x^3 + x^2,
|
81 | 81 | 1,
|
82 | 82 | 1),
|
@@ -274,8 +274,8 @@ def _repr_(self):
|
274 | 274 | Maximal infinite order of Rational function field in y over Rational Field
|
275 | 275 |
|
276 | 276 | sage: K.<x> = FunctionField(GF(2)); R.<t> = PolynomialRing(K)
|
277 |
| - sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2) # needs sage.rings.finite_rings sage.rings.function_field |
278 |
| - sage: F.maximal_order_infinite() # needs sage.modules sage.rings.finite_rings sage.rings.function_field |
| 277 | + sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2) # needs sage.rings.function_field |
| 278 | + sage: F.maximal_order_infinite() # needs sage.modules sage.rings.function_field |
279 | 279 | Maximal infinite order of Function field in y defined by y^3 + x^6 + x^4 + x^2
|
280 | 280 | """
|
281 | 281 | return "Maximal infinite order of %s"%(self.function_field(),)
|
0 commit comments