Skip to content

Commit 66417ae

Browse files
author
Xavier Caruso
committed
Merge branch 'drinfeld_tau' into morphisms_drinfeld_modules
2 parents 2a6ef64 + 124db5b commit 66417ae

File tree

2 files changed

+10
-10
lines changed

2 files changed

+10
-10
lines changed

src/sage/rings/function_field/drinfeld_modules/drinfeld_module.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -126,8 +126,8 @@ class DrinfeldModule(Parent, UniqueRepresentation):
126126
- ``gen`` -- the generator of the Drinfeld module; as a list of
127127
coefficients or an Ore polynomial
128128
129-
- ``name`` -- (default: ``'τ'``) the name of the Ore polynomial ring
130-
generator
129+
- ``name`` -- (default: `\tau`) the name of the Ore
130+
polynomial ring generator
131131
132132
.. RUBRIC:: Construction
133133
@@ -161,7 +161,7 @@ class DrinfeldModule(Parent, UniqueRepresentation):
161161
False
162162
163163
In those examples, we used a list of coefficients (``[z, 1, 1]``) to
164-
represent the generator `\phi_T = z + τ + τ^2`. One can also use
164+
represent the generator `\phi_T = z + \tau + \tau^2`. One can also use
165165
regular Ore polynomials::
166166
167167
sage: ore_polring = phi.ore_polring()
@@ -521,7 +521,7 @@ def __classcall_private__(cls, function_ring, gen, name='τ'):
521521
- ``gen`` -- the generator of the Drinfeld module; as a list of
522522
coefficients or an Ore polynomial
523523
524-
- ``name`` -- (default: ``'τ'``) the name of the variable of
524+
- ``name`` -- (default: `\tau`) the name of the variable of
525525
the Ore polynomial
526526
527527
OUTPUT: a DrinfeldModule or DrinfeldModule_finite
@@ -633,7 +633,7 @@ def __init__(self, gen, category):
633633
- ``gen`` -- the generator of the Drinfeld module; as a list of
634634
coefficients or an Ore polynomial
635635
636-
- ``name`` -- (default: ``'τ'``) the name of the variable of
636+
- ``name`` -- (default: `\tau`) the name of the variable of
637637
the Ore polynomial ring
638638
639639
TESTS::

src/sage/rings/function_field/drinfeld_modules/finite_drinfeld_module.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -138,7 +138,7 @@ def __init__(self, gen, category):
138138
- ``gen`` -- the generator of the Drinfeld module as a list of
139139
coefficients or an Ore polynomial
140140
141-
- ``name`` -- (default: ``'τ'``) the name of the variable of
141+
- ``name`` -- (default: `\tau`) the name of the variable of
142142
the Ore polynomial ring
143143
144144
TESTS::
@@ -235,7 +235,7 @@ def frobenius_endomorphism(self):
235235
236236
Let `q` be the order of the base field of the function ring. The
237237
*Frobenius endomorphism* is defined as the endomorphism whose
238-
defining Ore polynomial is `τ^q`.
238+
defining Ore polynomial is `\tau^q`.
239239
240240
EXAMPLES::
241241
@@ -273,14 +273,14 @@ def frobenius_charpoly(self, var='X', algorithm=None):
273273
274274
Let `\chi = X^r + \sum_{i=0}^{r-1} A_{i}(T)X^{i}` be the
275275
characteristic polynomial of the Frobenius endomorphism, and
276-
let `τ^n` be the Ore polynomial that defines the Frobenius
276+
let `\tau^n` be the Ore polynomial that defines the Frobenius
277277
endomorphism of `\phi`; by definition, `n` is the degree of `K`
278278
over the base field `\mathbb{F}_q`. Then we have
279279
280280
.. MATH::
281281
282-
\chi(τ^n)(\phi(T))
283-
= τ^{nr} + \sum_{i=1}^{r} \phi_{A_{i}}τ^{n(i)}
282+
\chi(\tau^n)(\phi(T))
283+
= \tau^{nr} + \sum_{i=1}^{r} \phi_{A_{i}}\tau^{n(i)}
284284
= 0,
285285
286286
with `\deg(A_i) \leq \frac{n(r-i)}{r}`.

0 commit comments

Comments
 (0)