@@ -2859,7 +2859,7 @@ cdef class Matroid(SageObject):
2859
2859
EXAMPLES::
2860
2860
2861
2861
sage: M = matroids.named_matroids.Fano()
2862
- sage: M.lattice_of_flats() # optional - sage.rings.finite_rings
2862
+ sage: M.lattice_of_flats()
2863
2863
Finite lattice containing 16 elements
2864
2864
"""
2865
2865
from sage.combinat.posets.lattices import LatticePoset
@@ -5083,7 +5083,7 @@ cdef class Matroid(SageObject):
5083
5083
sage: matroids. AG( 5,2) . is_kconnected( 4)
5084
5084
True
5085
5085
sage: M = matroids. named_matroids. R6( )
5086
- sage: M. is_kconnected( 3) # optional - sage . rings . finite_rings
5086
+ sage: M. is_kconnected( 3)
5087
5087
False
5088
5088
sage: B, X = M. is_kconnected( 3,True)
5089
5089
sage: M. connectivity( X) <3
@@ -5225,7 +5225,7 @@ cdef class Matroid(SageObject):
5225
5225
sage: matroids. named_matroids. BetsyRoss( ) . is_3connected( )
5226
5226
True
5227
5227
sage: M = matroids. named_matroids. R6( )
5228
- sage: M. is_3connected( ) # optional - sage . rings . finite_rings
5228
+ sage: M. is_3connected( )
5229
5229
False
5230
5230
sage: B, X = M. is_3connected( True)
5231
5231
sage: M. connectivity( X)
@@ -5285,7 +5285,7 @@ cdef class Matroid(SageObject):
5285
5285
.... : [0,0,1,1,0,0,1,1,0,1,0,1 ],
5286
5286
.... : [0,0,0,0,1,1,1,1,0,0,1,1 ],
5287
5287
.... : [0,0,0,0,0,0,0,0,1,1,1,1 ]])
5288
- sage: M. is_4connected( ) == M. is_4connected( algorithm="shifting") # optional - sage . rings . finite_rings
5288
+ sage: M. is_4connected( ) == M. is_4connected( algorithm="shifting")
5289
5289
True
5290
5290
sage: M. is_4connected( ) == M. is_4connected( algorithm="intersection")
5291
5291
True
@@ -5460,10 +5460,10 @@ cdef class Matroid(SageObject):
5460
5460
sage: matroids. named_matroids. BetsyRoss( ) . _is_3connected_shifting( )
5461
5461
True
5462
5462
sage: M = matroids. named_matroids. R6( )
5463
- sage: M. _is_3connected_shifting( ) # optional - sage. graphs sage . rings . finite_rings
5463
+ sage: M. _is_3connected_shifting( ) # optional - sage. graphs
5464
5464
False
5465
- sage: B, X = M. _is_3connected_shifting( True)
5466
- sage: M. connectivity( X)
5465
+ sage: B, X = M. _is_3connected_shifting( True) # optional - sage . graphs
5466
+ sage: M. connectivity( X) # optional - sage . graphs
5467
5467
1
5468
5468
"""
5469
5469
if not self .is_connected():
@@ -5534,7 +5534,7 @@ cdef class Matroid(SageObject):
5534
5534
.... : [0,0,1,1,0,0,1,1,0,1,0,1 ],
5535
5535
.... : [0,0,0,0,1,1,1,1,0,0,1,1 ],
5536
5536
.... : [0,0,0,0,0,0,0,0,1,1,1,1 ]])
5537
- sage: M. _is_4connected_shifting( ) # optional - sage. rings . finite_rings
5537
+ sage: M. _is_4connected_shifting( ) # optional - sage. graphs
5538
5538
True
5539
5539
"""
5540
5540
if self .rank()> self .size()- self .rank():
@@ -5794,7 +5794,7 @@ cdef class Matroid(SageObject):
5794
5794
sage: matroids. named_matroids. BetsyRoss( ) . _is_3connected_BC( )
5795
5795
True
5796
5796
sage: M = matroids. named_matroids. R6( )
5797
- sage: M. _is_3connected_BC( ) # optional - sage . rings . finite_rings
5797
+ sage: M. _is_3connected_BC( )
5798
5798
False
5799
5799
"""
5800
5800
# The 5 stages of the algorithm
@@ -5841,7 +5841,7 @@ cdef class Matroid(SageObject):
5841
5841
True
5842
5842
sage: M = matroids. named_matroids. R6( )
5843
5843
sage: B = M. basis( )
5844
- sage: M. _is_3connected_BC_recursion( B, # optional - sage . rings . finite_rings
5844
+ sage: M. _is_3connected_BC_recursion( B,
5845
5845
.... : [M.fundamental_cocircuit(B, e) for e in B ])
5846
5846
False
5847
5847
@@ -6083,12 +6083,12 @@ cdef class Matroid(SageObject):
6083
6083
EXAMPLES::
6084
6084
6085
6085
sage: N = matroids. named_matroids. Fano( )
6086
- sage: M = N. _local_ternary_matroid( ) # optional - sage . rings . finite_rings
6087
- sage: N. is_isomorphism( M, {e:e for e in N. groundset( ) }) # optional - sage . rings . finite_rings
6086
+ sage: M = N. _local_ternary_matroid( )
6087
+ sage: N. is_isomorphism( M, {e:e for e in N. groundset( ) })
6088
6088
False
6089
6089
sage: N = matroids. named_matroids. NonFano( )
6090
- sage: M = N. _local_ternary_matroid( ) # optional - sage . rings . finite_rings
6091
- sage: N. is_isomorphism( M, {e:e for e in N. groundset( ) }) # optional - sage . rings . finite_rings
6090
+ sage: M = N. _local_ternary_matroid( )
6091
+ sage: N. is_isomorphism( M, {e:e for e in N. groundset( ) })
6092
6092
True
6093
6093
"""
6094
6094
if basis is None :
@@ -6175,7 +6175,7 @@ cdef class Matroid(SageObject):
6175
6175
EXAMPLES::
6176
6176
6177
6177
sage: M = matroids. named_matroids. Fano( )
6178
- sage: M. ternary_matroid( ) is None # optional - sage . rings . finite_rings
6178
+ sage: M. ternary_matroid( ) is None
6179
6179
True
6180
6180
sage: N = matroids. named_matroids. NonFano( )
6181
6181
sage: N. ternary_matroid( )
@@ -6227,7 +6227,7 @@ cdef class Matroid(SageObject):
6227
6227
EXAMPLES::
6228
6228
6229
6229
sage: N = matroids. named_matroids. Fano( )
6230
- sage: N. is_ternary( ) # optional - sage . rings . finite_rings
6230
+ sage: N. is_ternary( )
6231
6231
False
6232
6232
sage: N = matroids. named_matroids. NonFano( )
6233
6233
sage: N. is_ternary( )
@@ -7886,7 +7886,7 @@ cdef class Matroid(SageObject):
7886
7886
EXAMPLES::
7887
7887
7888
7888
sage: M = matroids. named_matroids. Fano( )
7889
- sage: B = M. bergman_complex( ) ; B # optional - sage . rings . finite_rings
7889
+ sage: B = M. bergman_complex( ) ; B
7890
7890
Simplicial complex with 14 vertices and 21 facets
7891
7891
7892
7892
.. SEEALSO::
@@ -7925,7 +7925,7 @@ cdef class Matroid(SageObject):
7925
7925
EXAMPLES::
7926
7926
7927
7927
sage: M = matroids. named_matroids. Fano( )
7928
- sage: A = M. augmented_bergman_complex( ) ; A # optional - sage. graphs sage . rings . finite_rings
7928
+ sage: A = M. augmented_bergman_complex( ) ; A # optional - sage. graphs
7929
7929
Simplicial complex with 22 vertices and 91 facets
7930
7930
7931
7931
sage: M = matroids. Uniform( 2,3)
0 commit comments