@@ -513,9 +513,10 @@ def succ(u):
513
513
514
514
from sage .categories .finite_coxeter_groups import FiniteCoxeterGroups
515
515
default_category = FiniteEnumeratedSets () if self in FiniteCoxeterGroups () else EnumeratedSets ()
516
+ cat = default_category .or_subcategory (category )
516
517
return RecursivelyEnumeratedSet_forest ((self .one (),), succ ,
517
- algorithm = 'breadth' ,
518
- category = default_category . or_subcategory ( category ) )
518
+ algorithm = 'breadth' ,
519
+ category = cat )
519
520
520
521
@cached_method
521
522
def coxeter_element (self ):
@@ -2236,7 +2237,6 @@ def binary_factorizations(self, predicate=ConstantFunction(True)):
2236
2237
if not predicate (W .one ()):
2237
2238
from sage .sets .finite_enumerated_set import FiniteEnumeratedSet
2238
2239
return FiniteEnumeratedSet ([])
2239
- s = W .simple_reflections ()
2240
2240
2241
2241
def succ (u_v ):
2242
2242
u , v = u_v
@@ -2372,7 +2372,7 @@ def bruhat_lower_covers_reflections(self):
2372
2372
wi = self .apply_simple_reflection (i , side = 'right' )
2373
2373
return [(u .apply_simple_reflection (i , side = 'right' ),
2374
2374
r .apply_conjugation_by_simple_reflection (i ))
2375
- for u ,r in wi .bruhat_lower_covers_reflections ()
2375
+ for u , r in wi .bruhat_lower_covers_reflections ()
2376
2376
if not u .has_descent (i , side = 'right' )] + [
2377
2377
(wi , self .parent ().simple_reflection (i ))]
2378
2378
@@ -3109,7 +3109,7 @@ def kazhdan_lusztig_cell(self, side='left'):
3109
3109
3110
3110
The cell computation uses the optional package ``coxeter3`` in
3111
3111
the background if available to speed up the computation,
3112
- even in the different implementations implementations ::
3112
+ even in the different implementations::
3113
3113
3114
3114
sage: W = WeylGroup('A3', prefix='s') # optional - coxeter3
3115
3115
sage: s1,s2,s3 = W.simple_reflections() # optional - coxeter3
0 commit comments