@@ -4428,80 +4428,6 @@ def revert(self):
4428
4428
plethystic_inverse = revert
4429
4429
compositional_inverse = revert
4430
4430
4431
- def _format_series (self , formatter , format_strings = False ):
4432
- r"""
4433
- Return nonzero ``self`` formatted by ``formatter``.
4434
-
4435
- TESTS::
4436
-
4437
- sage: h = SymmetricFunctions(ZZ).h()
4438
- sage: e = SymmetricFunctions(ZZ).e()
4439
- sage: L = LazySymmetricFunctions(tensor([h, e]))
4440
- sage: f = L(lambda n: sum(tensor([h[k], e[n-k]]) for k in range(n+1)))
4441
- sage: f._format_series(repr)
4442
- '(h[]#e[])
4443
- + (h[]#e[1]+h[1]#e[])
4444
- + (h[]#e[2]+h[1]#e[1]+h[2]#e[])
4445
- + (h[]#e[3]+h[1]#e[2]+h[2]#e[1]+h[3]#e[])
4446
- + (h[]#e[4]+h[1]#e[3]+h[2]#e[2]+h[3]#e[1]+h[4]#e[])
4447
- + (h[]#e[5]+h[1]#e[4]+h[2]#e[3]+h[3]#e[2]+h[4]#e[1]+h[5]#e[])
4448
- + (h[]#e[6]+h[1]#e[5]+h[2]#e[4]+h[3]#e[3]+h[4]#e[2]+h[5]#e[1]+h[6]#e[])
4449
- + O^7'
4450
- """
4451
- P = self .parent ()
4452
- cs = self ._coeff_stream
4453
- v = cs ._approximate_order
4454
- if isinstance (cs , Stream_exact ):
4455
- if not cs ._constant :
4456
- m = cs ._degree
4457
- else :
4458
- m = cs ._degree + P .options .constant_length
4459
- else :
4460
- m = v + P .options .display_length
4461
-
4462
- atomic_repr = P ._internal_poly_ring .base_ring ()._repr_option ('element_is_atomic' )
4463
- mons = [P ._monomial (self [i ], i ) for i in range (v , m ) if self [i ]]
4464
- if not isinstance (cs , Stream_exact ) or cs ._constant :
4465
- if P ._internal_poly_ring .base_ring () is P .base_ring ():
4466
- bigO = ["O(%s)" % P ._monomial (1 , m )]
4467
- else :
4468
- bigO = ["O^%s" % m ]
4469
- else :
4470
- bigO = []
4471
-
4472
- from sage .misc .latex import latex
4473
- from sage .typeset .unicode_art import unicode_art
4474
- from sage .typeset .ascii_art import ascii_art
4475
- from sage .misc .repr import repr_lincomb
4476
- from sage .typeset .symbols import ascii_left_parenthesis , ascii_right_parenthesis
4477
- from sage .typeset .symbols import unicode_left_parenthesis , unicode_right_parenthesis
4478
- if formatter == repr :
4479
- poly = repr_lincomb ([(1 , m ) for m in mons + bigO ], strip_one = True )
4480
- elif formatter == latex :
4481
- poly = repr_lincomb ([(1 , m ) for m in mons + bigO ], is_latex = True , strip_one = True )
4482
- elif formatter == ascii_art :
4483
- if atomic_repr :
4484
- poly = ascii_art (* (mons + bigO ), sep = " + " )
4485
- else :
4486
- def parenthesize (m ):
4487
- a = ascii_art (m )
4488
- h = a .height ()
4489
- return ascii_art (ascii_left_parenthesis .character_art (h ),
4490
- a , ascii_right_parenthesis .character_art (h ))
4491
- poly = ascii_art (* ([parenthesize (m ) for m in mons ] + bigO ), sep = " + " )
4492
- elif formatter == unicode_art :
4493
- if atomic_repr :
4494
- poly = unicode_art (* (mons + bigO ), sep = " + " )
4495
- else :
4496
- def parenthesize (m ):
4497
- a = unicode_art (m )
4498
- h = a .height ()
4499
- return unicode_art (unicode_left_parenthesis .character_art (h ),
4500
- a , unicode_right_parenthesis .character_art (h ))
4501
- poly = unicode_art (* ([parenthesize (m ) for m in mons ] + bigO ), sep = " + " )
4502
-
4503
- return poly
4504
-
4505
4431
def symmetric_function (self , degree = None ):
4506
4432
r"""
4507
4433
Return ``self`` as a symmetric function if ``self`` is actually so.
0 commit comments