@@ -1486,9 +1486,11 @@ cpdef cauchy_kernel(t, args):
1486
1486
1487
1487
cpdef analytic_interior(COMPLEX_T z, int n, FLOAT_T epsilon):
1488
1488
"""
1489
- Provides a nearly exact computation of the Riemann Map of an interior
1490
- point of the ellipse with axes 1 + epsilon and 1 - epsilon. It is
1491
- primarily useful for testing the accuracy of the numerical Riemann Map.
1489
+ Provide a nearly exact computation of the Riemann Map of an interior
1490
+ point of the ellipse with axes 1 + epsilon and 1 - epsilon.
1491
+
1492
+ It is primarily useful for testing the accuracy of the numerical
1493
+ Riemann Map.
1492
1494
1493
1495
INPUT:
1494
1496
@@ -1511,10 +1513,10 @@ cpdef analytic_interior(COMPLEX_T z, int n, FLOAT_T epsilon):
1511
1513
sage: abs(m.riemann_map(.5)-analytic_interior(.5, 20, .3)) < 10^-6
1512
1514
True
1513
1515
"""
1514
- # evaluates the Cauchy integral of the boundary, split into the real
1515
- # and imaginary results because numerical_integral can't handle complex data.
1516
- rp = 1 / (TWOPI)* numerical_integral(cauchy_kernel, 0 , 2 * pi,
1517
- params = [epsilon, z, n, ' i' ])[0 ]
1518
- ip = 1 / (TWOPI* I)* numerical_integral(cauchy_kernel, 0 , 2 * pi,
1519
- params = [epsilon, z, n, ' r' ])[0 ]
1516
+ # evaluates the Cauchy integral of the boundary, split into the real and
1517
+ # imaginary results because numerical_integral cannot handle complex data.
1518
+ rp = 1 / (TWOPI) * numerical_integral(cauchy_kernel, 0 , 2 * pi,
1519
+ params = [epsilon, z, n, ' i' ])[0 ]
1520
+ ip = 1 / (TWOPI* I) * numerical_integral(cauchy_kernel, 0 , 2 * pi,
1521
+ params = [epsilon, z, n, ' r' ])[0 ]
1520
1522
return rp + ip
0 commit comments