Skip to content

Commit 7450309

Browse files
committed
fixing most E222 warning in py files
1 parent 443b754 commit 7450309

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

50 files changed

+88
-88
lines changed

src/sage/algebras/lie_algebras/heisenberg.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -261,7 +261,7 @@ def lie_algebra_generators(self):
261261
"""
262262
if self._n == 0:
263263
return Family(['z'], lambda i: self.z())
264-
k = ['p%s'%i for i in range(1, self._n+1)]
264+
k = ['p%s'%i for i in range(1, self._n+1)]
265265
k += ['q%s'%i for i in range(1, self._n+1)]
266266
d = {}
267267
for i in range(1, self._n+1):

src/sage/algebras/splitting_algebra.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -343,14 +343,14 @@ def __init__(self, monic_polynomial, names='X', iterate=True, warning=True):
343343
# ------------------------------------------------------------------
344344
if cf0_inv is not None:
345345
deg_cf = len(cf)-1
346-
pf = P(cf)
346+
pf = P(cf)
347347
for root in self._splitting_roots:
348348
check = self(pf)
349349
if not check.is_zero():
350350
continue
351351
root_inv = self.one()
352352
for pos in range(deg_cf-1 ):
353-
root_inv = (-1 )**(pos+1 ) * cf[deg_cf-pos-1 ] - root_inv * root
353+
root_inv = (-1 )**(pos+1 ) * cf[deg_cf-pos-1 ] - root_inv * root
354354
verbose("inverse %s of root %s" % (root_inv, root))
355355
root_inv = (-1 )**(deg_cf) * cf0_inv * root_inv
356356
self._invertible_elements.update({root:root_inv})

src/sage/categories/finite_dimensional_lie_algebras_with_basis.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1208,7 +1208,7 @@ def compute_diff(k):
12081208
zero = [zero] * len(indices)
12091209
for X in combinations(Ind, k):
12101210
if not sparse:
1211-
ret = list(zero)
1211+
ret = list(zero)
12121212
for i in range(k):
12131213
Y = list(X)
12141214
Y.pop(i)

src/sage/coding/punctured_code.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -652,7 +652,7 @@ def decode_to_code(self, y):
652652
try:
653653
shift = 0
654654
for i in list_pts:
655-
yl[i + shift] = values[shift]
655+
yl[i + shift] = values[shift]
656656
shift += 1
657657
y = A(yl)
658658
values = next(I)

src/sage/combinat/designs/orthogonal_arrays_build_recursive.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1404,7 +1404,7 @@ def brouwer_separable_design(k,t,q,x,check=False,verbose=False,explain_construct
14041404
assert x>=0
14051405
assert is_prime_power(q)
14061406
N2 = q**4+q**2+1
1407-
N1 = q**2+ q +1
1407+
N1 = q**2+ q +1
14081408

14091409
# A projective plane on (q^2-q+1)*(q^2+q+1)=q^4+q^2+1 points
14101410
B = difference_family(N2,q**2+1,1)[1][0]

src/sage/combinat/designs/steiner_quadruple_systems.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -718,7 +718,7 @@ def steiner_quadruple_system(n, check=False):
718718
elif n == 38:
719719
sqs = IncidenceStructure(38, _SQS38(), copy=False, check=False)
720720
elif n%12 in [4, 8]:
721-
nn = n // 2
721+
nn = n // 2
722722
sqs = two_n(steiner_quadruple_system(nn, check=False))
723723
elif n%18 in [4,10]:
724724
nn = (n+2) // 3

src/sage/combinat/root_system/root_lattice_realizations.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -594,7 +594,7 @@ def roots(self):
594594
if not self.cartan_type().is_finite():
595595
from sage.sets.disjoint_union_enumerated_sets \
596596
import DisjointUnionEnumeratedSets
597-
D = DisjointUnionEnumeratedSets([self.positive_roots(),
597+
D = DisjointUnionEnumeratedSets([self.positive_roots(),
598598
self.negative_roots()])
599599
D.rename("All roots of type {}".format(self.cartan_type()))
600600
return D
@@ -1509,7 +1509,7 @@ def simple_reflections(self):
15091509
sage: s
15101510
simple reflections
15111511
"""
1512-
res = self.alpha().zip(self.reflection, self.alphacheck())
1512+
res = self.alpha().zip(self.reflection, self.alphacheck())
15131513
# Should we use rename to set a nice name for this family?
15141514
res.rename("simple reflections")
15151515
return res

src/sage/combinat/root_system/type_D.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -341,7 +341,7 @@ def ascii_art(self, label=lambda i: i, node=None):
341341
if n == 2:
342342
ret = "{} {}\n".format(node(label(1)), node(label(2)))
343343
return ret + "{!s:4}{!s:4}".format(label(1), label(2))
344-
ret = (4*(n-3))*" "+"{} {}\n".format(node(label(n)), label(n))
344+
ret = (4*(n-3))*" "+"{} {}\n".format(node(label(n)), label(n))
345345
ret += ((4*(n-3))*" " +"|\n")*2
346346
ret += "---".join(node(label(i)) for i in range(1, n)) +"\n"
347347
ret += "".join("{!s:4}".format(label(i)) for i in range(1,n))

src/sage/combinat/sf/llt.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -256,7 +256,7 @@ def _llt_generic(self, skp, stat):
256256

257257
elif isinstance(skp, list) and skp[0] in sage.combinat.skew_partition.SkewPartitions():
258258
#skp is a list of skew partitions
259-
skp2 = [Partition(core=[], quotient=[skp[i][0] for i in range(len(skp))])]
259+
skp2 = [Partition(core=[], quotient=[skp[i][0] for i in range(len(skp))])]
260260
skp2 += [Partition(core=[], quotient=[skp[i][1] for i in range(len(skp))])]
261261
mu = Partitions(ZZ((skp2[0].size()-skp2[1].size()) / self.level()))
262262
skp = skp2

src/sage/combinat/t_sequences.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -520,7 +520,7 @@ def T_sequences_smallcases(t, existence=False, check=True):
520520
if t in db:
521521
if existence:
522522
return True
523-
sequences = list(map(Sequence, db[t]))
523+
sequences = list(map(Sequence, db[t]))
524524
if check:
525525
assert is_T_sequences_set(sequences)
526526
return sequences

0 commit comments

Comments
 (0)