@@ -57,10 +57,10 @@ class FunctionFieldFactory(UniqueFactory):
57
57
58
58
sage: K.<x> = FunctionField(QQ); K
59
59
Rational function field in x over Rational Field
60
- sage: L.<y> = FunctionField(GF(7)); L # optional - sage.rings.finite_rings
60
+ sage: L.<y> = FunctionField(GF(7)); L
61
61
Rational function field in y over Finite Field of size 7
62
- sage: R.<z> = L[] # optional - sage.rings.finite_rings
63
- sage: M.<z> = L.extension(z^7 - z - y); M # optional - sage.rings.finite_rings sage.rings.function_field
62
+ sage: R.<z> = L[]
63
+ sage: M.<z> = L.extension(z^7 - z - y); M # needs sage.rings.finite_rings sage.rings.function_field
64
64
Function field in z defined by z^7 + 6*z + 6*y
65
65
66
66
TESTS::
@@ -69,8 +69,8 @@ class FunctionFieldFactory(UniqueFactory):
69
69
sage: L.<x> = FunctionField(QQ)
70
70
sage: K is L
71
71
True
72
- sage: M.<x> = FunctionField(GF(7)) # optional - sage.rings.finite_rings
73
- sage: K is M # optional - sage.rings.finite_rings
72
+ sage: M.<x> = FunctionField(GF(7))
73
+ sage: K is M
74
74
False
75
75
sage: N.<y> = FunctionField(QQ)
76
76
sage: K is N
@@ -136,9 +136,9 @@ class FunctionFieldExtensionFactory(UniqueFactory):
136
136
sage: y2 = y*1
137
137
sage: y2 is y
138
138
False
139
- sage: L.<w> = K.extension(x - y^2) # optional - sage.rings.function_field
140
- sage: M.<w> = K.extension(x - y2^2) # optional - sage.rings.function_field
141
- sage: L is M # optional - sage.rings.function_field
139
+ sage: L.<w> = K.extension(x - y^2) # needs sage.rings.function_field
140
+ sage: M.<w> = K.extension(x - y2^2) # needs sage.rings.function_field
141
+ sage: L is M # needs sage.rings.function_field
142
142
True
143
143
"""
144
144
def create_key (self ,polynomial ,names ):
@@ -150,20 +150,20 @@ def create_key(self,polynomial,names):
150
150
151
151
sage: K.<x> = FunctionField(QQ)
152
152
sage: R.<y> = K[]
153
- sage: L.<w> = K.extension(x - y^2) # indirect doctest # optional - sage.rings.function_field
153
+ sage: L.<w> = K.extension(x - y^2) # indirect doctest # needs sage.rings.function_field
154
154
155
155
TESTS:
156
156
157
157
Verify that :trac:`16530` has been resolved::
158
158
159
159
sage: K.<x> = FunctionField(QQ)
160
160
sage: R.<y> = K[]
161
- sage: L.<y> = K.extension(y^2 - x) # optional - sage.rings.function_field
162
- sage: R.<z> = L[] # optional - sage.rings.function_field
163
- sage: M.<z> = L.extension(z - 1) # optional - sage.rings.function_field
161
+ sage: L.<y> = K.extension(y^2 - x) # needs sage.rings.function_field
162
+ sage: R.<z> = L[] # needs sage.rings.function_field
163
+ sage: M.<z> = L.extension(z - 1) # needs sage.rings.function_field
164
164
sage: R.<z> = K[]
165
- sage: N.<z> = K.extension(z - 1) # optional - sage.rings.function_field
166
- sage: M is N # optional - sage.rings.function_field
165
+ sage: N.<z> = K.extension(z - 1) # needs sage.rings.function_field
166
+ sage: M is N # needs sage.rings.function_field
167
167
False
168
168
169
169
"""
@@ -182,10 +182,10 @@ def create_object(self,version,key,**extra_args):
182
182
183
183
sage: K.<x> = FunctionField(QQ)
184
184
sage: R.<y> = K[]
185
- sage: L.<w> = K.extension(x - y^2) # indirect doctest # optional - sage.rings.function_field
186
- sage: y2 = y*1 # optional - sage.rings.function_field
187
- sage: M.<w> = K.extension(x - y2^2) # indirect doctest # optional - sage.rings.function_field
188
- sage: L is M # optional - sage.rings.function_field
185
+ sage: L.<w> = K.extension(x - y^2) # indirect doctest # needs sage.rings.function_field
186
+ sage: y2 = y*1
187
+ sage: M.<w> = K.extension(x - y2^2) # indirect doctest # needs sage.rings.function_field
188
+ sage: L is M # needs sage.rings.function_field
189
189
True
190
190
"""
191
191
from . import function_field_polymod , function_field_rational
0 commit comments