Skip to content

Commit 75a801c

Browse files
committed
src/doc/en/thematic_tutorials: add "needs sage.libs.eclib"
Several examples in the "Explicit methods in number theory" tutorial require "needs sage.libs.eclib" to pass when eclib is not installed (or was disabled).
1 parent 810bb4a commit 75a801c

File tree

2 files changed

+11
-2
lines changed

2 files changed

+11
-2
lines changed

src/doc/en/thematic_tutorials/explicit_methods_in_number_theory/birds_other.rst

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -123,6 +123,7 @@ more general, but doesn't scale nearly so well (yet).
123123

124124
::
125125

126+
sage: # needs sage.libs.eclib
126127
sage: M = CremonaModularSymbols(20014) # few seconds
127128
sage: M
128129
Cremona Modular Symbols space of dimension 5005 for

src/doc/en/thematic_tutorials/explicit_methods_in_number_theory/elliptic_curves.rst

Lines changed: 10 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -138,6 +138,7 @@ the :math:`5`-adic and :math:`997`-adic regulators of this curve.
138138

139139
::
140140

141+
sage: # needs sage.libs.eclib
141142
sage: E = EllipticCurve('389a')
142143
sage: E.padic_regulator(5, 10)
143144
5^2 + 2*5^3 + 2*5^4 + 4*5^5 + 3*5^6 + 4*5^7 + 3*5^8 + 5^9 + O(5^11)
@@ -154,6 +155,7 @@ nontrivial computational challenge. Now in Sage computing the
154155
155156
::
156157

158+
sage: # needs sage.libs.eclib
157159
sage: E.padic_regulator(100003,5) # a couple of seconds
158160
42582*100003^2 + 35250*100003^3 + 12790*100003^4 + 64078*100003^5 + O(100003^6)
159161

@@ -176,6 +178,7 @@ rank :math:`2`.
176178

177179
::
178180

181+
sage: # needs.sage.libs.eclib
179182
sage: E = EllipticCurve('389a')
180183
sage: L = E.padic_lseries(5)
181184
sage: L
@@ -199,7 +202,7 @@ unpublished papers of Wuthrich and me.
199202
sage: E.sha().bound() # so only 2 could divide sha
200203
[2]
201204
sage: E = EllipticCurve('37a1') # so only 2 could divide sha
202-
sage: E.sha().bound()
205+
sage: E.sha().bound() # needs sage.libs.eclib
203206
([2], 1)
204207
sage: E = EllipticCurve('389a1')
205208
sage: E.sha().bound()
@@ -223,6 +226,7 @@ and :math:`7` do not divide the Shafarevich-Tate group of our rank
223226

224227
::
225228

229+
sage: # needs sage.libs.eclib
226230
sage: E = EllipticCurve('389a1')
227231
sage: sha = E.sha()
228232
sage: sha.p_primary_bound(5) # iwasawa theory ==> 5 doesn't divide sha
@@ -242,6 +246,7 @@ number in general!
242246
243247
::
244248

249+
sage: # needs sage.libs.eclib
245250
sage: E.sha().an()
246251
1.00000000000000
247252

@@ -257,7 +262,7 @@ GP scripts for computing Mordell-Weil groups of elliptic curves.
257262
sage: E = EllipticCurve([1,2,5,17,159])
258263
sage: E.conductor() # not in the Tables
259264
10272987
260-
sage: E.gens() # a few seconds
265+
sage: E.gens() # a few seconds, needs sage.libs.eclib
261266
[(-3 : 9 : 1), (-3347/3249 : 1873597/185193 : 1)]
262267

263268

@@ -274,6 +279,7 @@ the only free open source implementation available.
274279

275280
::
276281

282+
sage: # needs sage.libs.eclib
277283
sage: E = EllipticCurve([1,2,5,7,17])
278284
sage: E.integral_points(both_signs=True)
279285
[(1 : -9 : 1), (1 : 3 : 1)]
@@ -283,6 +289,7 @@ rank :math:`3`, which has 36 integral points.
283289

284290
::
285291

292+
sage: # needs sage.libs.eclib
286293
sage: E = elliptic_curves.rank(3)[0]
287294
sage: E.integral_points(both_signs=True) # less than 3 seconds
288295
[(-3 : -1 : 1), (-3 : 0 : 1), (-2 : -4 : 1), (-2 : 3 : 1), ...(816 : -23310 : 1), (816 : 23309 : 1)]
@@ -299,6 +306,7 @@ points).
299306

300307
::
301308

309+
sage: # needs sage.libs.eclib
302310
sage: E = elliptic_curves.rank(4)[0]
303311
sage: E.integral_points(both_signs=True) # about a minute
304312
[(-10 : 3 : 1), (-10 : 7 : 1), ...

0 commit comments

Comments
 (0)