Skip to content

Commit 7819a59

Browse files
author
Release Manager
committed
Trac #34825: Uniformize headline: noncommutative polynomials
URL: https://trac.sagemath.org/34825 Reported by: klee Ticket author(s): Kwankyu Lee Reviewer(s): Matthias Koeppe
2 parents b9234de + 6c34279 commit 7819a59

File tree

12 files changed

+34
-43
lines changed

12 files changed

+34
-43
lines changed

build/pkgs/configure/checksums.ini

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
tarball=configure-VERSION.tar.gz
2-
sha1=cd10867f6ee013a5f7fcfa6c9c69b1aed1939399
3-
md5=dbbcb33cd3ea96259a902cdffad84ab9
4-
cksum=423684136
2+
sha1=1a386a25f14fbe63670357ec77392f63fd142ba1
3+
md5=5e01b503da35b503e540eeba33efdda0
4+
cksum=3630131692
Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
325b7c119c0cf14948e6052709a814bcd6e3f477
1+
5a4c299dbca2a9252b959265a44303e38590cf96

src/doc/en/reference/noncommutative_polynomial_rings/index.rst

Lines changed: 2 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,8 @@
11
Noncommutative Polynomials
22
==========================
33

4-
Univariate Ore polynomial rings
5-
-------------------------------
4+
Univariate Ore Polynomials
5+
--------------------------
66

77
.. toctree::
88
:maxdepth: 1
@@ -13,13 +13,6 @@ Univariate Ore polynomial rings
1313
sage/rings/polynomial/skew_polynomial_element
1414
sage/rings/polynomial/skew_polynomial_finite_order
1515
sage/rings/polynomial/skew_polynomial_finite_field
16-
17-
Fraction field of Ore polynomial rings
18-
--------------------------------------
19-
20-
.. toctree::
21-
:maxdepth: 1
22-
2316
sage/rings/polynomial/ore_function_field
2417
sage/rings/polynomial/ore_function_element
2518

src/sage/rings/polynomial/ore_function_element.py

Lines changed: 1 addition & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,12 +1,11 @@
11
r"""
2-
An element in the fraction field of a Ore polynomial ring.
2+
Fraction field elements of Ore polynomial rings
33
44
AUTHOR:
55
66
- Xavier Caruso (2020-05)
77
"""
88

9-
109
# ***************************************************************************
1110
# Copyright (C) 2020 Xavier Caruso <[email protected]>
1211
#
@@ -17,7 +16,6 @@
1716
# https://www.gnu.org/licenses/
1817
# ***************************************************************************
1918

20-
2119
from sage.structure.richcmp import richcmp, op_EQ, op_NE
2220
from sage.misc.cachefunc import cached_method
2321
from sage.misc.latex import latex

src/sage/rings/polynomial/ore_function_field.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
r"""
2-
Fraction fields of Ore polynomial rings.
2+
Fraction fields of Ore polynomial rings
33
44
Sage provides support for building the fraction field of any Ore
55
polynomial ring and performing basic operations in it.

src/sage/rings/polynomial/ore_polynomial_element.pyx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
r"""
2-
Univariate Ore Polynomials
2+
Univariate Ore polynomials
33
44
This module provides the
55
:class:`~sage.rings.polynomial.skew_polynomial_element.OrePolynomial`,

src/sage/rings/polynomial/ore_polynomial_ring.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
r"""
2-
Univariate Ore Polynomial Rings
2+
Univariate Ore polynomial rings
33
44
This module provides the
55
:class:`~sage.rings.polynomial.ore_polynomial_ring.OrePolynomialRing`,

src/sage/rings/polynomial/plural.pyx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
r"""
2-
Noncommutative Polynomials via libSINGULAR/Plural
2+
Noncommutative polynomials via libSINGULAR/Plural
33
44
This module provides specialized and optimized implementations for
55
noncommutative multivariate polynomials over many coefficient rings, via the

src/sage/rings/polynomial/skew_polynomial_element.pyx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
r"""
2-
Univariate Skew Polynomials
2+
Univariate skew polynomials
33
44
This module provides the
55
:class:`~sage.rings.polynomial.skew_polynomial_element.SkewPolynomial`.

src/sage/rings/polynomial/skew_polynomial_finite_field.pyx

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
r"""
2-
Univariate Dense Skew Polynomials over Finite Fields
2+
Univariate dense skew polynomials over finite fields
33
4-
This module provides the
4+
This module provides the
55
class:`~sage.rings.polynomial.skew_polynomial_finite_field.SkewPolynomial_finite_field_dense`,
66
which constructs a single univariate skew polynomial over a finite field
77
equipped with the Frobenius endomorphism. Among other things, it implements
@@ -336,7 +336,7 @@ cdef class SkewPolynomial_finite_field_dense(SkewPolynomial_finite_order_dense):
336336
....: N = R._reduced_norm_factor_uniform()
337337
....: counts[N] += 1
338338
sage: counts # random
339-
{z + 1: 969, z + 2: 31}
339+
{z + 1: 969, z + 2: 31}
340340
"""
341341
skew_ring = self._parent
342342
F = self._reduced_norm_factored()
@@ -390,7 +390,7 @@ cdef class SkewPolynomial_finite_field_dense(SkewPolynomial_finite_order_dense):
390390
sage: for D in rightdiv:
391391
....: assert P.is_right_divisible_by(D), "not right divisible"
392392
....: assert D.is_irreducible(), "not irreducible"
393-
393+
394394
sage: P = S.random_element(degree=10)
395395
sage: leftdiv = [ f for f in P.left_irreducible_divisors() ] # indirect doctest
396396
sage: len(leftdiv) == P.count_irreducible_divisors()
@@ -401,7 +401,7 @@ cdef class SkewPolynomial_finite_field_dense(SkewPolynomial_finite_order_dense):
401401
....: assert P.is_left_divisible_by(D), "not left divisible"
402402
....: assert D.is_irreducible(), "not irreducible"
403403
"""
404-
cdef SkewPolynomial_finite_field_dense NS, P, Q, R, P1, Q1, L, V, g, d
404+
cdef SkewPolynomial_finite_field_dense NS, P, Q, R, P1, Q1, L, V, g, d
405405
cdef Py_ssize_t i, m, degrandom
406406
if not self:
407407
return
@@ -697,8 +697,8 @@ cdef class SkewPolynomial_finite_field_dense(SkewPolynomial_finite_order_dense):
697697
698698
.. NOTE::
699699
700-
One can prove that there are always as many left
701-
irreducible monic divisors as right irreducible
700+
One can prove that there are always as many left
701+
irreducible monic divisors as right irreducible
702702
monic divisors.
703703
704704
EXAMPLES::
@@ -936,7 +936,7 @@ cdef class SkewPolynomial_finite_field_dense(SkewPolynomial_finite_order_dense):
936936
937937
INPUT:
938938
939-
- ``uniform`` -- a boolean (default: ``False``); whether the
939+
- ``uniform`` -- a boolean (default: ``False``); whether the
940940
output irreducible divisor should be uniformly distributed
941941
among all possibilities
942942
@@ -966,7 +966,7 @@ cdef class SkewPolynomial_finite_field_dense(SkewPolynomial_finite_order_dense):
966966
sage: F.value() == a
967967
True
968968
969-
There is a priori no guarantee on the distribution of the
969+
There is a priori no guarantee on the distribution of the
970970
factorizations we get. Passing in the keyword ``uniform=True``
971971
ensures the output is uniformly distributed among all
972972
factorizations::
@@ -1077,9 +1077,9 @@ cdef class SkewPolynomial_finite_field_dense(SkewPolynomial_finite_order_dense):
10771077
....: assert F.value() == a, "factorization has a different value"
10781078
....: for d,_ in F:
10791079
....: assert d.is_irreducible(), "a factor is not irreducible"
1080-
1081-
Note that the algorithm used in this method is probabilistic.
1082-
As a consequence, if we call it two times with the same input,
1080+
1081+
Note that the algorithm used in this method is probabilistic.
1082+
As a consequence, if we call it two times with the same input,
10831083
we can get different orderings::
10841084
10851085
sage: factorizations2 = [ F for F in a.factorizations() ]

0 commit comments

Comments
 (0)