@@ -37,7 +37,7 @@ def KostkaFoulkesPolynomial(mu, nu, t=None):
37
37
`\nu` is a partition of the same size.
38
38
39
39
The Kostka-Foulkes polynomial is defined to be the sum
40
- of the monomials `t^{\operatorname{charge}(T)` over all
40
+ of the monomials `t^{\operatorname{charge}(T)} ` over all
41
41
semistandard tableaux `T` of shape `\lambda / \mu``,
42
42
where `\operatorname{charge}(T)` denotes the charge
43
43
of the reading word of `T`
@@ -53,7 +53,7 @@ def KostkaFoulkesPolynomial(mu, nu, t=None):
53
53
54
54
- the Kostka-Foulkes polynomial indexed by ``mu`` and ``nu`` and
55
55
evaluated at the parameter ``t``. If ``t`` is ``None`` the resulting
56
- polynomial is in the polynomial ring `\ZZ['t' ]`.
56
+ polynomial is in the polynomial ring `\ZZ[t ]`.
57
57
58
58
EXAMPLES::
59
59
@@ -146,7 +146,7 @@ def kfpoly(mu, nu, t=None):
146
146
def kfpoly_skew (lamu , nu , t = None ):
147
147
r"""
148
148
Return the Kostka-Foulkes polynomial `K_{\lambda / \mu, \nu}(t)`
149
- by summing `t^{\operatorname{charge}(T)` over all semistandard
149
+ by summing `t^{\operatorname{charge}(T)} ` over all semistandard
150
150
tableaux `T` of shape `\lambda / \mu``.
151
151
152
152
INPUT:
0 commit comments