@@ -37,7 +37,7 @@ def KostkaFoulkesPolynomial(mu, nu, t=None):
3737 `\nu` is a partition of the same size.
3838
3939 The Kostka-Foulkes polynomial is defined to be the sum
40- of the monomials `t^{\operatorname{charge}(T)` over all
40+ of the monomials `t^{\operatorname{charge}(T)} ` over all
4141 semistandard tableaux `T` of shape `\lambda / \mu``,
4242 where `\operatorname{charge}(T)` denotes the charge
4343 of the reading word of `T`
@@ -53,7 +53,7 @@ def KostkaFoulkesPolynomial(mu, nu, t=None):
5353
5454 - the Kostka-Foulkes polynomial indexed by ``mu`` and ``nu`` and
5555 evaluated at the parameter ``t``. If ``t`` is ``None`` the resulting
56- polynomial is in the polynomial ring `\ZZ['t' ]`.
56+ polynomial is in the polynomial ring `\ZZ[t ]`.
5757
5858 EXAMPLES::
5959
@@ -146,7 +146,7 @@ def kfpoly(mu, nu, t=None):
146146def kfpoly_skew (lamu , nu , t = None ):
147147 r"""
148148 Return the Kostka-Foulkes polynomial `K_{\lambda / \mu, \nu}(t)`
149- by summing `t^{\operatorname{charge}(T)` over all semistandard
149+ by summing `t^{\operatorname{charge}(T)} ` over all semistandard
150150 tableaux `T` of shape `\lambda / \mu``.
151151
152152 INPUT:
0 commit comments