@@ -176,15 +176,13 @@ def __init__(self, parent, u=None):
176
176
177
177
EXAMPLES::
178
178
179
- sage: # needs sage.rings.finite_rings
180
179
sage: K.<x> = FunctionField(GF(2))
181
180
sage: R.<y> = K[]
182
181
sage: L.<y> = K.extension(y^2 - x)
183
182
sage: d = L.derivation()
184
183
185
184
This also works for iterated non-monic extensions::
186
185
187
- sage: # needs sage.rings.finite_rings
188
186
sage: K.<x> = FunctionField(GF(2))
189
187
sage: R.<y> = K[]
190
188
sage: L.<y> = K.extension(y^2 - 1/x)
@@ -195,7 +193,7 @@ def __init__(self, parent, u=None):
195
193
196
194
We can also create a multiple of the canonical derivation::
197
195
198
- sage: M.derivation([x]) # needs sage.rings.finite_rings
196
+ sage: M.derivation([x])
199
197
x*d/dz
200
198
"""
201
199
FunctionFieldDerivation .__init__ (self , parent )
@@ -221,7 +219,6 @@ def _call_(self, x):
221
219
222
220
EXAMPLES::
223
221
224
- sage: # needs sage.rings.finite_rings
225
222
sage: K.<x> = FunctionField(GF(2))
226
223
sage: R.<y> = K[]
227
224
sage: L.<y> = K.extension(y^2 - x)
@@ -245,7 +242,6 @@ def _add_(self, other):
245
242
246
243
EXAMPLES::
247
244
248
- sage: # needs sage.rings.finite_rings
249
245
sage: K.<x> = FunctionField(GF(3))
250
246
sage: R.<y> = K[]
251
247
sage: L.<y> = K.extension(y^3 - x)
@@ -263,7 +259,6 @@ def _lmul_(self, factor):
263
259
264
260
EXAMPLES::
265
261
266
- sage: # needs sage.rings.finite_rings
267
262
sage: K.<x> = FunctionField(GF(2))
268
263
sage: R.<y> = K[]
269
264
sage: L.<y> = K.extension(y^2 - x)
@@ -286,8 +281,8 @@ class FunctionFieldHigherDerivation(Map):
286
281
287
282
EXAMPLES::
288
283
289
- sage: F.<x> = FunctionField(GF(2)) # needs sage.rings.finite_rings
290
- sage: F.higher_derivation() # needs sage.rings.finite_rings
284
+ sage: F.<x> = FunctionField(GF(2))
285
+ sage: F.higher_derivation()
291
286
Higher derivation map:
292
287
From: Rational function field in x over Finite Field of size 2
293
288
To: Rational function field in x over Finite Field of size 2
@@ -316,9 +311,9 @@ def _repr_type(self) -> str:
316
311
317
312
EXAMPLES::
318
313
319
- sage: F.<x> = FunctionField(GF(2)) # needs sage.rings.finite_rings
320
- sage: h = F.higher_derivation() # needs sage.rings.finite_rings
321
- sage: h # indirect doctest # needs sage.rings.finite_rings
314
+ sage: F.<x> = FunctionField(GF(2))
315
+ sage: h = F.higher_derivation()
316
+ sage: h # indirect doctest
322
317
Higher derivation map:
323
318
From: Rational function field in x over Finite Field of size 2
324
319
To: Rational function field in x over Finite Field of size 2
@@ -331,9 +326,9 @@ def __eq__(self, other) -> bool:
331
326
332
327
TESTS::
333
328
334
- sage: F.<x> = FunctionField(GF(2)) # needs sage.rings.finite_rings
335
- sage: h = F.higher_derivation() # needs sage.rings.finite_rings
336
- sage: loads(dumps(h)) == h # needs sage.rings.finite_rings
329
+ sage: F.<x> = FunctionField(GF(2))
330
+ sage: h = F.higher_derivation()
331
+ sage: loads(dumps(h)) == h
337
332
True
338
333
"""
339
334
if isinstance (other , FunctionFieldHigherDerivation ):
@@ -349,9 +344,9 @@ def _pth_root_in_prime_field(e):
349
344
350
345
sage: from sage.rings.function_field.derivations_polymod import _pth_root_in_prime_field
351
346
sage: p = 5
352
- sage: F.<a> = GF(p) # needs sage.rings.finite_rings
353
- sage: e = F.random_element() # needs sage.rings.finite_rings
354
- sage: _pth_root_in_prime_field(e)^p == e # needs sage.rings.finite_rings
347
+ sage: F.<a> = GF(p)
348
+ sage: e = F.random_element()
349
+ sage: _pth_root_in_prime_field(e)^p == e
355
350
True
356
351
"""
357
352
return e
@@ -383,7 +378,6 @@ class RationalFunctionFieldHigherDerivation_global(FunctionFieldHigherDerivation
383
378
384
379
EXAMPLES::
385
380
386
- sage: # needs sage.rings.finite_rings
387
381
sage: F.<x> = FunctionField(GF(2))
388
382
sage: h = F.higher_derivation()
389
383
sage: h
@@ -399,9 +393,9 @@ def __init__(self, field):
399
393
400
394
TESTS::
401
395
402
- sage: F.<x> = FunctionField(GF(2)) # needs sage.rings.finite_rings
403
- sage: h = F.higher_derivation() # needs sage.rings.finite_rings
404
- sage: TestSuite(h).run(skip='_test_category') # needs sage.rings.finite_rings
396
+ sage: F.<x> = FunctionField(GF(2))
397
+ sage: h = F.higher_derivation()
398
+ sage: TestSuite(h).run(skip='_test_category')
405
399
"""
406
400
FunctionFieldHigherDerivation .__init__ (self , field )
407
401
@@ -414,9 +408,9 @@ def _call_with_args(self, f, args=(), kwds={}):
414
408
415
409
EXAMPLES::
416
410
417
- sage: F.<x> = FunctionField(GF(2)) # needs sage.rings.finite_rings
418
- sage: h = F.higher_derivation() # needs sage.rings.finite_rings
419
- sage: h(x^2, 2) # indirect doctest # needs sage.rings.finite_rings
411
+ sage: F.<x> = FunctionField(GF(2))
412
+ sage: h = F.higher_derivation()
413
+ sage: h(x^2, 2) # indirect doctest
420
414
1
421
415
"""
422
416
return self ._derive (f , * args , ** kwds )
@@ -430,7 +424,6 @@ def _derive(self, f, i, separating_element=None):
430
424
431
425
EXAMPLES::
432
426
433
- sage: # needs sage.rings.finite_rings
434
427
sage: F.<x> = FunctionField(GF(2))
435
428
sage: h = F.higher_derivation()
436
429
sage: h._derive(x^3, 0)
@@ -498,7 +491,6 @@ def _prime_power_representation(self, f, separating_element=None):
498
491
499
492
EXAMPLES::
500
493
501
- sage: # needs sage.rings.finite_rings
502
494
sage: F.<x> = FunctionField(GF(2))
503
495
sage: h = F.higher_derivation()
504
496
sage: h._prime_power_representation(x^2 + x + 1)
@@ -549,9 +541,9 @@ def _pth_root(self, c):
549
541
550
542
EXAMPLES::
551
543
552
- sage: F.<x> = FunctionField(GF(2)) # needs sage.rings.finite_rings
553
- sage: h = F.higher_derivation() # needs sage.rings.finite_rings
554
- sage: h._pth_root((x^2+1)^2) # needs sage.rings.finite_rings
544
+ sage: F.<x> = FunctionField(GF(2))
545
+ sage: h = F.higher_derivation()
546
+ sage: h._pth_root((x^2+1)^2)
555
547
x^2 + 1
556
548
"""
557
549
K = self ._field
@@ -578,7 +570,6 @@ class FunctionFieldHigherDerivation_global(FunctionFieldHigherDerivation):
578
570
579
571
EXAMPLES::
580
572
581
- sage: # needs sage.rings.finite_rings
582
573
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
583
574
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
584
575
sage: h = L.higher_derivation()
@@ -596,7 +587,6 @@ def __init__(self, field):
596
587
597
588
TESTS::
598
589
599
- sage: # needs sage.rings.finite_rings
600
590
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
601
591
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
602
592
sage: h = L.higher_derivation()
@@ -625,7 +615,6 @@ def _call_with_args(self, f, args, kwds):
625
615
626
616
EXAMPLES::
627
617
628
- sage: # needs sage.rings.finite_rings
629
618
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
630
619
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
631
620
sage: h = L.higher_derivation()
@@ -643,7 +632,6 @@ def _derive(self, f, i, separating_element=None):
643
632
644
633
EXAMPLES::
645
634
646
- sage: # needs sage.rings.finite_rings
647
635
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
648
636
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
649
637
sage: h = L.higher_derivation()
@@ -743,7 +731,6 @@ def _prime_power_representation(self, f, separating_element=None):
743
731
744
732
EXAMPLES::
745
733
746
- sage: # needs sage.rings.finite_rings
747
734
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
748
735
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
749
736
sage: h = L.higher_derivation()
@@ -790,7 +777,6 @@ def _pth_root(self, c):
790
777
791
778
EXAMPLES::
792
779
793
- sage: # needs sage.rings.finite_rings
794
780
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
795
781
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
796
782
sage: h = L.higher_derivation()
0 commit comments