@@ -168,7 +168,8 @@ def domain(self):
168
168
169
169
sage: H = WeylGroup(["A",3]).algebra(QQ).demazure_lusztig_operators(-1,1)
170
170
sage: H.domain()
171
- Algebra of Weyl Group of type ['A', 3] (as a matrix group acting on the ambient space) over Rational Field
171
+ Algebra of Weyl Group of type ['A', 3] (as a matrix group
172
+ acting on the ambient space) over Rational Field
172
173
"""
173
174
return self ._domain
174
175
@@ -429,7 +430,8 @@ def Tw_inverse(self, word):
429
430
sage: x = KW.monomial(W.an_element()); x
430
431
123
431
432
sage: rho.Tw_inverse(word)(x)
432
- 1/q2^2*12321 + ((-q1-q2)/(q1*q2^2))*1231 + ((-q1-q2)/(q1*q2^2))*1232 + ((q1^2+2*q1*q2+q2^2)/(q1^2*q2^2))*123
433
+ 1/q2^2*12321 + ((-q1-q2)/(q1*q2^2))*1231 + ((-q1-q2)/(q1*q2^2))*1232
434
+ + ((q1^2+2*q1*q2+q2^2)/(q1^2*q2^2))*123
433
435
sage: rho.Tw(word)(_)
434
436
123
435
437
"""
@@ -548,9 +550,12 @@ def Y_lambdacheck(self, lambdacheck):
548
550
sage: x = KW.monomial(W.an_element()); x
549
551
12
550
552
sage: Y1(x)
551
- ((-q1^2-2*q1*q2-q2^2)/(-q2^2))*2121 + ((q1^3+q1^2*q2+q1*q2^2+q2^3)/(-q1*q2^2))*121 + ((q1^2+q1*q2)/(-q2^2))*212 + ((-q1^2)/(-q2^2))*12
553
+ ((-q1^2-2*q1*q2-q2^2)/(-q2^2))*2121
554
+ + ((q1^3+q1^2*q2+q1*q2^2+q2^3)/(-q1*q2^2))*121
555
+ + ((q1^2+q1*q2)/(-q2^2))*212 + ((-q1^2)/(-q2^2))*12
552
556
sage: Y2(x)
553
- ((-q1^4-q1^3*q2-q1*q2^3-q2^4)/(-q1^3*q2))*2121 + ((q1^3+q1^2*q2+q1*q2^2+q2^3)/(-q1^2*q2))*121 + (q2^3/(-q1^3))*12
557
+ ((-q1^4-q1^3*q2-q1*q2^3-q2^4)/(-q1^3*q2))*2121
558
+ + ((q1^3+q1^2*q2+q1*q2^2+q2^3)/(-q1^2*q2))*121 + (q2^3/(-q1^3))*12
554
559
sage: Y1(Y2(x))
555
560
((q1*q2+q2^2)/q1^2)*212 + ((-q2)/q1)*12
556
561
sage: Y2(Y1(x))
@@ -750,9 +755,11 @@ def Y_eigenvectors(self):
750
755
sage: [E[w] for w in W]
751
756
[2121 - 121 - 212 + 12 + 21 - 1 - 2 + ,
752
757
-2121 + 212,
753
- (q2/(q1-q2))*2121 + (q2/(-q1+q2))*121 + (q2/(-q1+q2))*212 - 12 + ((-q2)/(-q1+q2))*21 + 2,
758
+ (q2/(q1-q2))*2121 + (q2/(-q1+q2))*121
759
+ + (q2/(-q1+q2))*212 - 12 + ((-q2)/(-q1+q2))*21 + 2,
754
760
((-q2^2)/(-q1^2+q1*q2-q2^2))*2121 - 121 + (q2^2/(-q1^2+q1*q2-q2^2))*212 + 21,
755
- ((-q1^2-q2^2)/(q1^2-q1*q2+q2^2))*2121 + ((-q1^2-q2^2)/(-q1^2+q1*q2-q2^2))*121 + ((-q2^2)/(-q1^2+q1*q2-q2^2))*212 + (q2^2/(-q1^2+q1*q2-q2^2))*12 - 21 + 1,
761
+ ((-q1^2-q2^2)/(q1^2-q1*q2+q2^2))*2121 + ((-q1^2-q2^2)/(-q1^2+q1*q2-q2^2))*121
762
+ + ((-q2^2)/(-q1^2+q1*q2-q2^2))*212 + (q2^2/(-q1^2+q1*q2-q2^2))*12 - 21 + 1,
756
763
2121,
757
764
(q2/(-q1+q2))*2121 + ((-q2)/(-q1+q2))*121 - 212 + 12,
758
765
-2121 + 121]
@@ -838,7 +845,8 @@ def __init__(self, T, T_Y=None, normalized=True):
838
845
sage: E.keys()
839
846
Weyl Group of type ['B', 3] (as a matrix group acting on the ambient space)
840
847
sage: E.domain()
841
- Algebra of Weyl Group of type ['B', 3] (as a matrix group acting on the ambient space) over Fraction Field of Multivariate Polynomial Ring in q1, q2 over Rational Field
848
+ Algebra of Weyl Group of type ['B', 3] (as a matrix group acting on the ambient space)
849
+ over Fraction Field of Multivariate Polynomial Ring in q1, q2 over Rational Field
842
850
sage: E._T == E._T_Y
843
851
True
844
852
"""
@@ -863,7 +871,7 @@ def cartan_type(self):
863
871
sage: E.cartan_type()
864
872
['B', 3, 1]
865
873
866
- sage: NonSymmetricMacdonaldPolynomials(["B", 2, 1]).cartan_type()
874
+ sage: NonSymmetricMacdonaldPolynomials(["B", 2, 1]).cartan_type() # optional - sage.graphs
867
875
['B', 2, 1]
868
876
"""
869
877
return self ._T_Y .cartan_type ()
@@ -880,7 +888,9 @@ def domain(self):
880
888
sage: KW = W.algebra(K)
881
889
sage: E = KW.demazure_lusztig_eigenvectors(q1, q2)
882
890
sage: E.domain()
883
- Algebra of Weyl Group of type ['B', 3] (as a matrix group acting on the ambient space) over Multivariate Polynomial Ring in q1, q2 over Rational Field
891
+ Algebra of Weyl Group of type ['B', 3]
892
+ (as a matrix group acting on the ambient space)
893
+ over Multivariate Polynomial Ring in q1, q2 over Rational Field
884
894
"""
885
895
return self ._T .domain ()
886
896
0 commit comments