@@ -1561,10 +1561,9 @@ def is_fully_commutative(self) -> bool:
1561
1561
r"""
1562
1562
Check if ``self`` is a fully-commutative element.
1563
1563
1564
- We use the characterization that
1565
- an element `w` in a Coxeter system `(W,S)` is
1566
- fully-commutative if and only if for every pair of
1567
- generators `s,t \in S` for which `m(s,t)>2`, no reduced
1564
+ We use the characterization that an element `w` in a Coxeter
1565
+ system `(W,S)` is fully-commutative if and only if for every pair
1566
+ of generators `s,t \in S` for which `m(s,t)>2`, no reduced
1568
1567
word of `w` contains the 'braid' word `sts...` of length
1569
1568
`m(s,t)` as a contiguous subword. See [Ste1996]_.
1570
1569
@@ -1576,6 +1575,12 @@ def is_fully_commutative(self) -> bool:
1576
1575
sage: W = CoxeterGroup(['B', 3])
1577
1576
sage: len([1 for w in W if w.is_fully_commutative()])
1578
1577
24
1578
+
1579
+ TESTS::
1580
+
1581
+ sage: W = CoxeterGroup(['A', 2], index_set=['u','v'])
1582
+ sage: len([1 for w in W if w.is_fully_commutative()])
1583
+ 5
1579
1584
"""
1580
1585
word = self .reduced_word ()
1581
1586
from sage .combinat .root_system .braid_orbit import is_fully_commutative as is_fully_comm
0 commit comments