9
9
10
10
sage: p0 = (0, 0)
11
11
sage: p1 = (1, 0)
12
- sage: p2 = (1/2, AA(3).sqrt()/2) # optional - sage.rings.number_field
13
- sage: equilateral_triangle = Polyhedron([p0, p1, p2]) # optional - sage.rings.number_field
14
- sage: equilateral_triangle.vertices() # optional - sage.rings.number_field
12
+ sage: p2 = (1/2, AA(3).sqrt()/2) # optional - sage.rings.number_field
13
+ sage: equilateral_triangle = Polyhedron([p0, p1, p2]) # optional - sage.rings.number_field
14
+ sage: equilateral_triangle.vertices() # optional - sage.rings.number_field
15
15
(A vertex at (0, 0),
16
16
A vertex at (1, 0),
17
17
A vertex at (0.500000000000000?, 0.866025403784439?))
18
- sage: equilateral_triangle.inequalities() # optional - sage.rings.number_field
18
+ sage: equilateral_triangle.inequalities() # optional - sage.rings.number_field
19
19
(An inequality (-1, -0.5773502691896258?) x + 1 >= 0,
20
20
An inequality (1, -0.5773502691896258?) x + 0 >= 0,
21
21
An inequality (0, 1.154700538379252?) x + 0 >= 0)
@@ -46,15 +46,15 @@ class Polyhedron_field(Polyhedron_base):
46
46
47
47
EXAMPLES::
48
48
49
- sage: p = Polyhedron(vertices=[(0,0),(AA(2).sqrt(),0),(0,AA(3).sqrt())], # optional - sage.rings.number_field
49
+ sage: p = Polyhedron(vertices=[(0,0),(AA(2).sqrt(),0),(0,AA(3).sqrt())], # optional - sage.rings.number_field
50
50
....: rays=[(1,1)], lines=[], backend='field', base_ring=AA)
51
- sage: TestSuite(p).run() # optional - sage.rings.number_field
51
+ sage: TestSuite(p).run() # optional - sage.rings.number_field
52
52
53
53
TESTS::
54
54
55
- sage: K.<sqrt3> = QuadraticField(3) # optional - sage.rings.number_field
56
- sage: p = Polyhedron([(0,0), (1,0), (1/2, sqrt3/2)]) # optional - sage.rings.number_field
57
- sage: TestSuite(p).run() # optional - sage.rings.number_field
55
+ sage: K.<sqrt3> = QuadraticField(3) # optional - sage.rings.number_field
56
+ sage: p = Polyhedron([(0,0), (1,0), (1/2, sqrt3/2)]) # optional - sage.rings.number_field
57
+ sage: TestSuite(p).run() # optional - sage.rings.number_field
58
58
59
59
Check that :trac:`19013` is fixed::
60
60
@@ -85,10 +85,10 @@ def _is_zero(self, x):
85
85
86
86
EXAMPLES::
87
87
88
- sage: p = Polyhedron([(sqrt(3),sqrt(2))], base_ring=AA) # optional - sage.rings.number_field
89
- sage: p._is_zero(0) # optional - sage.rings.number_field
88
+ sage: p = Polyhedron([(sqrt(3),sqrt(2))], base_ring=AA) # optional - sage.rings.number_field sage.symbolic
89
+ sage: p._is_zero(0) # optional - sage.rings.number_field sage.symbolic
90
90
True
91
- sage: p._is_zero(1/100000) # optional - sage.rings.number_field
91
+ sage: p._is_zero(1/100000) # optional - sage.rings.number_fiedl
92
92
False
93
93
"""
94
94
return x == 0
@@ -107,10 +107,10 @@ def _is_nonneg(self, x):
107
107
108
108
EXAMPLES::
109
109
110
- sage: p = Polyhedron([(sqrt(3),sqrt(2))], base_ring=AA) # optional - sage.rings.number_field
111
- sage: p._is_nonneg(1) # optional - sage.rings.number_field
110
+ sage: p = Polyhedron([(sqrt(3),sqrt(2))], base_ring=AA) # optional - sage.rings.number_field sage.symbolic
111
+ sage: p._is_nonneg(1) # optional - sage.rings.number_field sage.symbolic
112
112
True
113
- sage: p._is_nonneg(-1/100000) # optional - sage.rings.number_field
113
+ sage: p._is_nonneg(-1/100000) # optional - sage.rings.number_field sage.symbolic
114
114
False
115
115
"""
116
116
return x >= 0
@@ -129,10 +129,10 @@ def _is_positive(self, x):
129
129
130
130
EXAMPLES::
131
131
132
- sage: p = Polyhedron([(sqrt(3),sqrt(2))], base_ring=AA) # optional - sage.rings.number_field
133
- sage: p._is_positive(1) # optional - sage.rings.number_field
132
+ sage: p = Polyhedron([(sqrt(3),sqrt(2))], base_ring=AA) # optional - sage.rings.number_field sage.symbolic
133
+ sage: p._is_positive(1) # optional - sage.rings.number_field sage.symbolic
134
134
True
135
- sage: p._is_positive(0) # optional - sage.rings.number_field
135
+ sage: p._is_positive(0) # optional - sage.rings.number_field sage.symbolic
136
136
False
137
137
"""
138
138
return x > 0
@@ -152,12 +152,12 @@ def _init_from_Vrepresentation_and_Hrepresentation(self, Vrep, Hrep):
152
152
153
153
sage: from sage.geometry.polyhedron.parent import Polyhedra_field
154
154
sage: from sage.geometry.polyhedron.backend_field import Polyhedron_field
155
- sage: parent = Polyhedra_field(AA, 1, 'field') # optional - sage.rings.number_field
155
+ sage: parent = Polyhedra_field(AA, 1, 'field') # optional - sage.rings.number_field
156
156
sage: Vrep = [[[0], [1]], [], []]
157
157
sage: Hrep = [[[0, 1], [1, -1]], []]
158
- sage: p = Polyhedron_field(parent, Vrep, Hrep, # indirect doctest # optional - sage.rings.number_field
158
+ sage: p = Polyhedron_field(parent, Vrep, Hrep, # indirect doctest # optional - sage.rings.number_field
159
159
....: Vrep_minimal=True, Hrep_minimal=True)
160
- sage: p # optional - sage.rings.number_field
160
+ sage: p # optional - sage.rings.number_field
161
161
A 1-dimensional polyhedron in AA^1 defined as the convex hull of 2 vertices
162
162
"""
163
163
self ._init_Vrepresentation (* Vrep )
@@ -246,13 +246,13 @@ def _init_Vrepresentation(self, vertices, rays, lines):
246
246
247
247
sage: from sage.geometry.polyhedron.parent import Polyhedra_field
248
248
sage: from sage.geometry.polyhedron.backend_field import Polyhedron_field
249
- sage: parent = Polyhedra_field(AA, 1, 'field') # optional - sage.rings.number_field
249
+ sage: parent = Polyhedra_field(AA, 1, 'field') # optional - sage.rings.number_field
250
250
sage: Vrep = [[[0], [1]], [], []]
251
251
sage: Hrep = [[[0, 1], [1, -1]], []]
252
- sage: p = Polyhedron_field(parent, Vrep, Hrep, # indirect doctest # optional - sage.rings.number_field
252
+ sage: p = Polyhedron_field(parent, Vrep, Hrep, # indirect doctest # optional - sage.rings.number_field
253
253
....: Vrep_minimal=True,
254
254
....: Hrep_minimal=True)
255
- sage: p.vertices_list() # optional - sage.rings.number_field
255
+ sage: p.vertices_list() # optional - sage.rings.number_field
256
256
[[0], [1]]
257
257
"""
258
258
self ._Vrepresentation = []
@@ -271,15 +271,15 @@ def _init_Vrepresentation_backend(self, Vrep):
271
271
272
272
EXAMPLES::
273
273
274
- sage: p = Polyhedron(vertices=[(0, 1/sqrt(2)), # indirect doctest # optional - sage.rings.number_field
274
+ sage: p = Polyhedron(vertices=[(0, 1/sqrt(2)), # indirect doctest # optional - sage.rings.number_field sage.symbolic
275
275
....: (sqrt(2), 0),
276
276
....: (4, sqrt(5)/6)],
277
277
....: base_ring=AA, backend='field')
278
- sage: p.Hrepresentation() # optional - sage.rings.number_field
278
+ sage: p.Hrepresentation() # optional - sage.rings.number_field sage.symbolic
279
279
(An inequality (-0.1582178750233332?, 1.097777812326429?) x + 0.2237538646678492? >= 0,
280
280
An inequality (-0.1419794359520263?, -1.698172434277148?) x + 1.200789243901438? >= 0,
281
281
An inequality (0.3001973109753594?, 0.600394621950719?) x - 0.4245431085692869? >= 0)
282
- sage: p.Vrepresentation() # optional - sage.rings.number_field
282
+ sage: p.Vrepresentation() # optional - sage.rings.number_field sage.symbolic
283
283
(A vertex at (0.?e-16, 0.7071067811865475?),
284
284
A vertex at (1.414213562373095?, 0),
285
285
A vertex at (4.000000000000000?, 0.372677996249965?))
@@ -294,12 +294,12 @@ def _init_Hrepresentation(self, inequalities, equations):
294
294
295
295
sage: from sage.geometry.polyhedron.parent import Polyhedra_field
296
296
sage: from sage.geometry.polyhedron.backend_field import Polyhedron_field
297
- sage: parent = Polyhedra_field(AA, 1, 'field') # optional - sage.rings.number_field
297
+ sage: parent = Polyhedra_field(AA, 1, 'field') # optional - sage.rings.number_field
298
298
sage: Vrep = [[[0], [1]], [], []]
299
299
sage: Hrep = [[[0, 1], [1, -1]], []]
300
- sage: p = Polyhedron_field(parent, Vrep, Hrep, # indirect doctest # optional - sage.rings.number_field
300
+ sage: p = Polyhedron_field(parent, Vrep, Hrep, # indirect doctest # optional - sage.rings.number_field
301
301
....: Vrep_minimal=True, Hrep_minimal=True)
302
- sage: p.inequalities_list() # optional - sage.rings.number_field
302
+ sage: p.inequalities_list() # optional - sage.rings.number_field
303
303
[[0, 1], [1, -1]]
304
304
"""
305
305
self ._Hrepresentation = []
@@ -316,15 +316,15 @@ def _init_Hrepresentation_backend(self, Hrep):
316
316
317
317
EXAMPLES::
318
318
319
- sage: p = Polyhedron(vertices=[(0, 1/sqrt(2)), # indirect doctest # optional - sage.rings.number_field
319
+ sage: p = Polyhedron(vertices=[(0, 1/sqrt(2)), # indirect doctest # optional - sage.rings.number_field sage.symbolic
320
320
....: (sqrt(2), 0),
321
321
....: (4, sqrt(5)/6)],
322
322
....: base_ring=AA, backend='field')
323
- sage: p.Hrepresentation() # optional - sage.rings.number_field
323
+ sage: p.Hrepresentation() # optional - sage.rings.number_field sage.symbolic
324
324
(An inequality (-0.1582178750233332?, 1.097777812326429?) x + 0.2237538646678492? >= 0,
325
325
An inequality (-0.1419794359520263?, -1.698172434277148?) x + 1.200789243901438? >= 0,
326
326
An inequality (0.3001973109753594?, 0.600394621950719?) x - 0.4245431085692869? >= 0)
327
- sage: p.Vrepresentation() # optional - sage.rings.number_field
327
+ sage: p.Vrepresentation() # optional - sage.rings.number_field sage.symbolic
328
328
(A vertex at (0.?e-16, 0.7071067811865475?),
329
329
A vertex at (1.414213562373095?, 0),
330
330
A vertex at (4.000000000000000?, 0.372677996249965?))
@@ -337,11 +337,11 @@ def _init_empty_polyhedron(self):
337
337
338
338
TESTS::
339
339
340
- sage: empty = Polyhedron(backend='field', base_ring=AA); empty # optional - sage.rings.number_field
340
+ sage: empty = Polyhedron(backend='field', base_ring=AA); empty # optional - sage.rings.number_field
341
341
The empty polyhedron in AA^0
342
- sage: empty.Vrepresentation() # optional - sage.rings.number_field
342
+ sage: empty.Vrepresentation() # optional - sage.rings.number_field
343
343
()
344
- sage: empty.Hrepresentation() # optional - sage.rings.number_field
344
+ sage: empty.Hrepresentation() # optional - sage.rings.number_field
345
345
(An equation -1 == 0,)
346
346
sage: Polyhedron(vertices=[], backend='field')
347
347
The empty polyhedron in QQ^0
0 commit comments