Skip to content

Commit 7b5f3db

Browse files
author
Matthias Koeppe
committed
Massive modularization fixes
1 parent 26f5a09 commit 7b5f3db

File tree

6 files changed

+77
-77
lines changed

6 files changed

+77
-77
lines changed

src/sage/geometry/polyhedron/backend_field.py

Lines changed: 36 additions & 36 deletions
Original file line numberDiff line numberDiff line change
@@ -9,13 +9,13 @@
99
1010
sage: p0 = (0, 0)
1111
sage: p1 = (1, 0)
12-
sage: p2 = (1/2, AA(3).sqrt()/2) # optional - sage.rings.number_field
13-
sage: equilateral_triangle = Polyhedron([p0, p1, p2]) # optional - sage.rings.number_field
14-
sage: equilateral_triangle.vertices() # optional - sage.rings.number_field
12+
sage: p2 = (1/2, AA(3).sqrt()/2) # optional - sage.rings.number_field
13+
sage: equilateral_triangle = Polyhedron([p0, p1, p2]) # optional - sage.rings.number_field
14+
sage: equilateral_triangle.vertices() # optional - sage.rings.number_field
1515
(A vertex at (0, 0),
1616
A vertex at (1, 0),
1717
A vertex at (0.500000000000000?, 0.866025403784439?))
18-
sage: equilateral_triangle.inequalities() # optional - sage.rings.number_field
18+
sage: equilateral_triangle.inequalities() # optional - sage.rings.number_field
1919
(An inequality (-1, -0.5773502691896258?) x + 1 >= 0,
2020
An inequality (1, -0.5773502691896258?) x + 0 >= 0,
2121
An inequality (0, 1.154700538379252?) x + 0 >= 0)
@@ -46,15 +46,15 @@ class Polyhedron_field(Polyhedron_base):
4646
4747
EXAMPLES::
4848
49-
sage: p = Polyhedron(vertices=[(0,0),(AA(2).sqrt(),0),(0,AA(3).sqrt())], # optional - sage.rings.number_field
49+
sage: p = Polyhedron(vertices=[(0,0),(AA(2).sqrt(),0),(0,AA(3).sqrt())], # optional - sage.rings.number_field
5050
....: rays=[(1,1)], lines=[], backend='field', base_ring=AA)
51-
sage: TestSuite(p).run() # optional - sage.rings.number_field
51+
sage: TestSuite(p).run() # optional - sage.rings.number_field
5252
5353
TESTS::
5454
55-
sage: K.<sqrt3> = QuadraticField(3) # optional - sage.rings.number_field
56-
sage: p = Polyhedron([(0,0), (1,0), (1/2, sqrt3/2)]) # optional - sage.rings.number_field
57-
sage: TestSuite(p).run() # optional - sage.rings.number_field
55+
sage: K.<sqrt3> = QuadraticField(3) # optional - sage.rings.number_field
56+
sage: p = Polyhedron([(0,0), (1,0), (1/2, sqrt3/2)]) # optional - sage.rings.number_field
57+
sage: TestSuite(p).run() # optional - sage.rings.number_field
5858
5959
Check that :trac:`19013` is fixed::
6060
@@ -85,10 +85,10 @@ def _is_zero(self, x):
8585
8686
EXAMPLES::
8787
88-
sage: p = Polyhedron([(sqrt(3),sqrt(2))], base_ring=AA) # optional - sage.rings.number_field
89-
sage: p._is_zero(0) # optional - sage.rings.number_field
88+
sage: p = Polyhedron([(sqrt(3),sqrt(2))], base_ring=AA) # optional - sage.rings.number_field sage.symbolic
89+
sage: p._is_zero(0) # optional - sage.rings.number_field sage.symbolic
9090
True
91-
sage: p._is_zero(1/100000) # optional - sage.rings.number_field
91+
sage: p._is_zero(1/100000) # optional - sage.rings.number_fiedl
9292
False
9393
"""
9494
return x == 0
@@ -107,10 +107,10 @@ def _is_nonneg(self, x):
107107
108108
EXAMPLES::
109109
110-
sage: p = Polyhedron([(sqrt(3),sqrt(2))], base_ring=AA) # optional - sage.rings.number_field
111-
sage: p._is_nonneg(1) # optional - sage.rings.number_field
110+
sage: p = Polyhedron([(sqrt(3),sqrt(2))], base_ring=AA) # optional - sage.rings.number_field sage.symbolic
111+
sage: p._is_nonneg(1) # optional - sage.rings.number_field sage.symbolic
112112
True
113-
sage: p._is_nonneg(-1/100000) # optional - sage.rings.number_field
113+
sage: p._is_nonneg(-1/100000) # optional - sage.rings.number_field sage.symbolic
114114
False
115115
"""
116116
return x >= 0
@@ -129,10 +129,10 @@ def _is_positive(self, x):
129129
130130
EXAMPLES::
131131
132-
sage: p = Polyhedron([(sqrt(3),sqrt(2))], base_ring=AA) # optional - sage.rings.number_field
133-
sage: p._is_positive(1) # optional - sage.rings.number_field
132+
sage: p = Polyhedron([(sqrt(3),sqrt(2))], base_ring=AA) # optional - sage.rings.number_field sage.symbolic
133+
sage: p._is_positive(1) # optional - sage.rings.number_field sage.symbolic
134134
True
135-
sage: p._is_positive(0) # optional - sage.rings.number_field
135+
sage: p._is_positive(0) # optional - sage.rings.number_field sage.symbolic
136136
False
137137
"""
138138
return x > 0
@@ -152,12 +152,12 @@ def _init_from_Vrepresentation_and_Hrepresentation(self, Vrep, Hrep):
152152
153153
sage: from sage.geometry.polyhedron.parent import Polyhedra_field
154154
sage: from sage.geometry.polyhedron.backend_field import Polyhedron_field
155-
sage: parent = Polyhedra_field(AA, 1, 'field') # optional - sage.rings.number_field
155+
sage: parent = Polyhedra_field(AA, 1, 'field') # optional - sage.rings.number_field
156156
sage: Vrep = [[[0], [1]], [], []]
157157
sage: Hrep = [[[0, 1], [1, -1]], []]
158-
sage: p = Polyhedron_field(parent, Vrep, Hrep, # indirect doctest # optional - sage.rings.number_field
158+
sage: p = Polyhedron_field(parent, Vrep, Hrep, # indirect doctest # optional - sage.rings.number_field
159159
....: Vrep_minimal=True, Hrep_minimal=True)
160-
sage: p # optional - sage.rings.number_field
160+
sage: p # optional - sage.rings.number_field
161161
A 1-dimensional polyhedron in AA^1 defined as the convex hull of 2 vertices
162162
"""
163163
self._init_Vrepresentation(*Vrep)
@@ -246,13 +246,13 @@ def _init_Vrepresentation(self, vertices, rays, lines):
246246
247247
sage: from sage.geometry.polyhedron.parent import Polyhedra_field
248248
sage: from sage.geometry.polyhedron.backend_field import Polyhedron_field
249-
sage: parent = Polyhedra_field(AA, 1, 'field') # optional - sage.rings.number_field
249+
sage: parent = Polyhedra_field(AA, 1, 'field') # optional - sage.rings.number_field
250250
sage: Vrep = [[[0], [1]], [], []]
251251
sage: Hrep = [[[0, 1], [1, -1]], []]
252-
sage: p = Polyhedron_field(parent, Vrep, Hrep, # indirect doctest # optional - sage.rings.number_field
252+
sage: p = Polyhedron_field(parent, Vrep, Hrep, # indirect doctest # optional - sage.rings.number_field
253253
....: Vrep_minimal=True,
254254
....: Hrep_minimal=True)
255-
sage: p.vertices_list() # optional - sage.rings.number_field
255+
sage: p.vertices_list() # optional - sage.rings.number_field
256256
[[0], [1]]
257257
"""
258258
self._Vrepresentation = []
@@ -271,15 +271,15 @@ def _init_Vrepresentation_backend(self, Vrep):
271271
272272
EXAMPLES::
273273
274-
sage: p = Polyhedron(vertices=[(0, 1/sqrt(2)), # indirect doctest # optional - sage.rings.number_field
274+
sage: p = Polyhedron(vertices=[(0, 1/sqrt(2)), # indirect doctest # optional - sage.rings.number_field sage.symbolic
275275
....: (sqrt(2), 0),
276276
....: (4, sqrt(5)/6)],
277277
....: base_ring=AA, backend='field')
278-
sage: p.Hrepresentation() # optional - sage.rings.number_field
278+
sage: p.Hrepresentation() # optional - sage.rings.number_field sage.symbolic
279279
(An inequality (-0.1582178750233332?, 1.097777812326429?) x + 0.2237538646678492? >= 0,
280280
An inequality (-0.1419794359520263?, -1.698172434277148?) x + 1.200789243901438? >= 0,
281281
An inequality (0.3001973109753594?, 0.600394621950719?) x - 0.4245431085692869? >= 0)
282-
sage: p.Vrepresentation() # optional - sage.rings.number_field
282+
sage: p.Vrepresentation() # optional - sage.rings.number_field sage.symbolic
283283
(A vertex at (0.?e-16, 0.7071067811865475?),
284284
A vertex at (1.414213562373095?, 0),
285285
A vertex at (4.000000000000000?, 0.372677996249965?))
@@ -294,12 +294,12 @@ def _init_Hrepresentation(self, inequalities, equations):
294294
295295
sage: from sage.geometry.polyhedron.parent import Polyhedra_field
296296
sage: from sage.geometry.polyhedron.backend_field import Polyhedron_field
297-
sage: parent = Polyhedra_field(AA, 1, 'field') # optional - sage.rings.number_field
297+
sage: parent = Polyhedra_field(AA, 1, 'field') # optional - sage.rings.number_field
298298
sage: Vrep = [[[0], [1]], [], []]
299299
sage: Hrep = [[[0, 1], [1, -1]], []]
300-
sage: p = Polyhedron_field(parent, Vrep, Hrep, # indirect doctest # optional - sage.rings.number_field
300+
sage: p = Polyhedron_field(parent, Vrep, Hrep, # indirect doctest # optional - sage.rings.number_field
301301
....: Vrep_minimal=True, Hrep_minimal=True)
302-
sage: p.inequalities_list() # optional - sage.rings.number_field
302+
sage: p.inequalities_list() # optional - sage.rings.number_field
303303
[[0, 1], [1, -1]]
304304
"""
305305
self._Hrepresentation = []
@@ -316,15 +316,15 @@ def _init_Hrepresentation_backend(self, Hrep):
316316
317317
EXAMPLES::
318318
319-
sage: p = Polyhedron(vertices=[(0, 1/sqrt(2)), # indirect doctest # optional - sage.rings.number_field
319+
sage: p = Polyhedron(vertices=[(0, 1/sqrt(2)), # indirect doctest # optional - sage.rings.number_field sage.symbolic
320320
....: (sqrt(2), 0),
321321
....: (4, sqrt(5)/6)],
322322
....: base_ring=AA, backend='field')
323-
sage: p.Hrepresentation() # optional - sage.rings.number_field
323+
sage: p.Hrepresentation() # optional - sage.rings.number_field sage.symbolic
324324
(An inequality (-0.1582178750233332?, 1.097777812326429?) x + 0.2237538646678492? >= 0,
325325
An inequality (-0.1419794359520263?, -1.698172434277148?) x + 1.200789243901438? >= 0,
326326
An inequality (0.3001973109753594?, 0.600394621950719?) x - 0.4245431085692869? >= 0)
327-
sage: p.Vrepresentation() # optional - sage.rings.number_field
327+
sage: p.Vrepresentation() # optional - sage.rings.number_field sage.symbolic
328328
(A vertex at (0.?e-16, 0.7071067811865475?),
329329
A vertex at (1.414213562373095?, 0),
330330
A vertex at (4.000000000000000?, 0.372677996249965?))
@@ -337,11 +337,11 @@ def _init_empty_polyhedron(self):
337337
338338
TESTS::
339339
340-
sage: empty = Polyhedron(backend='field', base_ring=AA); empty # optional - sage.rings.number_field
340+
sage: empty = Polyhedron(backend='field', base_ring=AA); empty # optional - sage.rings.number_field
341341
The empty polyhedron in AA^0
342-
sage: empty.Vrepresentation() # optional - sage.rings.number_field
342+
sage: empty.Vrepresentation() # optional - sage.rings.number_field
343343
()
344-
sage: empty.Hrepresentation() # optional - sage.rings.number_field
344+
sage: empty.Hrepresentation() # optional - sage.rings.number_field
345345
(An equation -1 == 0,)
346346
sage: Polyhedron(vertices=[], backend='field')
347347
The empty polyhedron in QQ^0

src/sage/geometry/polyhedron/backend_number_field.py

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -39,15 +39,14 @@ class Polyhedron_number_field(Polyhedron_field, Polyhedron_base_number_field):
3939
4040
EXAMPLES::
4141
42-
sage: P = Polyhedron(vertices=[[1], [sqrt(2)]], backend='number_field') # optional - sage.rings.number_field
43-
sage: P # optional - sage.rings.number_field
42+
sage: P = Polyhedron(vertices=[[1], [sqrt(2)]], backend='number_field'); P # optional - sage.rings.number_field sage.symbolic
4443
A 1-dimensional polyhedron
4544
in (Symbolic Ring)^1 defined as the convex hull of 2 vertices
46-
sage: P.vertices() # optional - sage.rings.number_field
45+
sage: P.vertices() # optional - sage.rings.number_field sage.symbolic
4746
(A vertex at (1), A vertex at (sqrt(2)))
4847
49-
sage: P = polytopes.icosahedron(exact=True, backend='number_field') # optional - sage.rings.number_field
50-
sage: P # optional - sage.rings.number_field
48+
sage: P = polytopes.icosahedron(exact=True, backend='number_field') # optional - sage.rings.number_field
49+
sage: P # optional - sage.rings.number_field
5150
A 3-dimensional polyhedron
5251
in (Number Field in sqrt5 with defining polynomial x^2 - 5
5352
with sqrt5 = 2.236067977499790?)^3
@@ -56,24 +55,25 @@ class Polyhedron_number_field(Polyhedron_field, Polyhedron_base_number_field):
5655
sage: x = polygen(ZZ); P = Polyhedron( # optional - sage.rings.number_field sage.symbolic
5756
....: vertices=[[sqrt(2)], [AA.polynomial_root(x^3-2, RIF(0,3))]],
5857
....: backend='number_field')
59-
sage: P # optional - sage.rings.number_field
58+
sage: P # optional - sage.rings.number_field sage.symbolic
6059
A 1-dimensional polyhedron
6160
in (Symbolic Ring)^1 defined as the convex hull of 2 vertices
62-
sage: P.vertices() # optional - sage.rings.number_field
61+
sage: P.vertices() # optional - sage.rings.number_field sage.symbolic
6362
(A vertex at (sqrt(2)), A vertex at (2^(1/3)))
6463
6564
TESTS:
6665
6766
Tests from :class:`~sage.geometry.polyhedron.backend_field.Polyhedron_field` --
6867
here the data are already either in a number field or in ``AA``::
6968
70-
sage: p = Polyhedron(vertices=[(0,0),(AA(2).sqrt(),0),(0,AA(3).sqrt())], # optional - sage.rings.number_field
71-
....: rays=[(1,1)], lines=[], backend='number_field', base_ring=AA)
72-
sage: TestSuite(p).run() # optional - sage.rings.number_field
69+
sage: p = Polyhedron(vertices=[(0,0),(AA(2).sqrt(),0),(0,AA(3).sqrt())], # optional - sage.rings.number_field
70+
....: rays=[(1,1)], lines=[], backend='number_field',
71+
....: base_ring=AA)
72+
sage: TestSuite(p).run() # optional - sage.rings.number_field
7373
74-
sage: K.<sqrt3> = QuadraticField(3) # optional - sage.rings.number_field
75-
sage: p = Polyhedron([(0,0), (1,0), (1/2, sqrt3/2)], backend='number_field') # optional - sage.rings.number_field
76-
sage: TestSuite(p).run() # optional - sage.rings.number_field
74+
sage: K.<sqrt3> = QuadraticField(3) # optional - sage.rings.number_field
75+
sage: p = Polyhedron([(0,0), (1,0), (1/2, sqrt3/2)], backend='number_field') # optional - sage.rings.number_field
76+
sage: TestSuite(p).run() # optional - sage.rings.number_field
7777
7878
sage: x = polygen(ZZ, 'x')
7979
sage: K.<phi> = NumberField(x^2 - x - 1, embedding=1.618) # optional - sage.rings.number_field

src/sage/geometry/polyhedron/base2.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -276,8 +276,8 @@ def h_star_vector(self):
276276
sage: cube = polytopes.cube(intervals='zero_one', backend='normaliz') # optional - pynormaliz
277277
sage: cube.h_star_vector() # optional - pynormaliz
278278
[1, 4, 1]
279-
sage: from sage.combinat.combinat import eulerian_number # optional - sage.combinat
280-
sage: [eulerian_number(3,i) for i in range(3)] # optional - sage.combinat
279+
sage: from sage.combinat.combinat import eulerian_number # optional - sage.combinat
280+
sage: [eulerian_number(3,i) for i in range(3)] # optional - sage.combinat
281281
[1, 4, 1]
282282
283283
TESTS::
@@ -294,8 +294,8 @@ def h_star_vector(self):
294294
...
295295
TypeError: The h_star vector is only defined for lattice polytopes
296296
297-
sage: t2 = Polyhedron(vertices=[[AA(sqrt(2))], [1/2]]) # optional - sage.rings.number_field
298-
sage: t2.h_star_vector() # optional - sage.rings.number_field
297+
sage: t2 = Polyhedron(vertices=[[AA(sqrt(2))], [1/2]]) # optional - sage.rings.number_field sage.symbolic
298+
sage: t2.h_star_vector() # optional - sage.rings.number_field sage.symbolic
299299
Traceback (most recent call last):
300300
...
301301
TypeError: The h_star vector is only defined for lattice polytopes

0 commit comments

Comments
 (0)