@@ -764,73 +764,6 @@ def unit_ideal(self):
764764 """
765765 return self ._ideal_class_ (1 )(self , [self .one ()])
766766
767- def _ideal_class_ (self , n = 0 ):
768- r"""
769- Return a callable object that can be used to create ideals in this
770- ring.
771-
772- EXAMPLES::
773-
774- sage: MS = MatrixSpace(QQ, 2, 2) # needs sage.modules
775- sage: MS._ideal_class_() # needs sage.modules
776- <class 'sage.rings.noncommutative_ideals.Ideal_nc'>
777-
778- Since :issue:`7797`, non-commutative rings have ideals as well::
779-
780- sage: A = SteenrodAlgebra(2) # needs sage.combinat sage.modules
781- sage: A._ideal_class_() # needs sage.combinat sage.modules
782- <class 'sage.rings.noncommutative_ideals.Ideal_nc'>
783- """
784- from sage .rings .noncommutative_ideals import Ideal_nc
785- return Ideal_nc
786-
787- @cached_method
788- def zero_ideal (self ):
789- """
790- Return the zero ideal of this ring (cached).
791-
792- EXAMPLES::
793-
794- sage: ZZ.zero_ideal()
795- Principal ideal (0) of Integer Ring
796- sage: QQ.zero_ideal()
797- Principal ideal (0) of Rational Field
798- sage: QQ['x'].zero_ideal()
799- Principal ideal (0) of Univariate Polynomial Ring in x over Rational Field
800-
801- The result is cached::
802-
803- sage: ZZ.zero_ideal() is ZZ.zero_ideal()
804- True
805-
806- TESTS:
807-
808- Make sure that :issue:`13644` is fixed::
809-
810- sage: # needs sage.rings.padics
811- sage: K = Qp(3)
812- sage: R.<a> = K[]
813- sage: L.<a> = K.extension(a^2-3)
814- sage: L.ideal(a)
815- Principal ideal (1 + O(a^40)) of 3-adic Eisenstein Extension Field in a defined by a^2 - 3
816- """
817- return self ._ideal_class_ (1 )(self , [self .zero ()])
818-
819- def principal_ideal (self , gen , coerce = True ):
820- """
821- Return the principal ideal generated by gen.
822-
823- EXAMPLES::
824-
825- sage: R.<x,y> = ZZ[]
826- sage: R.principal_ideal(x+2*y)
827- Ideal (x + 2*y) of Multivariate Polynomial Ring in x, y over Integer Ring
828- """
829- C = self ._ideal_class_ (1 )
830- if coerce :
831- gen = self (gen )
832- return C (self , [gen ])
833-
834767 def characteristic (self ):
835768 """
836769 Return the characteristic of this ring.
0 commit comments