26
26
from sage .sets .family import Family
27
27
from sage .rings .integer_ring import ZZ
28
28
29
+
29
30
class ACEQuantumOnsagerAlgebra (CombinatorialFreeModule ):
30
31
r"""
31
32
The alternating central extension of the `q`-Onsager algebra.
32
33
33
34
The *alternating central extension* `\mathcal{A}_q` of the `q`-Onsager
34
- alegbra `O_q` is a current algebra of `O_q` introduced by Baseilhac
35
+ algebra `O_q` is a current algebra of `O_q` introduced by Baseilhac
35
36
and Koizumi [BK2005]_. A presentation was given by Baseilhac
36
37
and Shigechi [BS2010]_, which was then reformulated in terms of currents
37
38
in [Ter2021]_ and then used to prove that the generators form a PBW basis.
@@ -163,7 +164,7 @@ def _monomial_key(self, x):
163
164
164
165
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
165
166
sage: AG = A.algebra_generators()
166
- sage: AG[1,1] * AG[1,0] * AG[0,1] # indirect doctest
167
+ sage: AG[1,1] * AG[1,0] * AG[0,1] # indirect doctest
167
168
G[1]*W[0]*W[1] + (q/(q^2+1))*G[1]^2 + (-q/(q^2+1))*G[1]*Gt[1]
168
169
+ ((-q^8+2*q^4-1)/q^5)*W[-1]*W[1] + ((-q^8+2*q^4-1)/q^5)*W[0]^2
169
170
+ ((q^8-2*q^4+1)/q^5)*W[0]*W[2] + ((q^8-2*q^4+1)/q^5)*W[1]^2
@@ -276,6 +277,7 @@ def algebra_generators(self):
276
277
"""
277
278
G = self ._indices .gens ()
278
279
q = self ._q
280
+
279
281
def monomial_map (x ):
280
282
if x [0 ] != 1 and x [1 ] == 0 :
281
283
return self .term (self .one_basis (), - (q - ~ q )* (q + ~ q )** 2 )
@@ -658,7 +660,7 @@ def sigma(self):
658
660
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
659
661
sage: G = A.algebra_generators()
660
662
sage: x = A.an_element()^2
661
- sage: A.sigma(A.sigma(x)) == x
663
+ sage: A.sigma(A.sigma(x)) == x
662
664
True
663
665
sage: A.sigma(G[1,-1] * G[1,1]) == A.sigma(G[1,-1]) * A.sigma(G[1,1])
664
666
True
@@ -677,7 +679,7 @@ def dagger(self):
677
679
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
678
680
sage: G = A.algebra_generators()
679
681
sage: x = A.an_element()^2
680
- sage: A.dagger(A.dagger(x)) == x
682
+ sage: A.dagger(A.dagger(x)) == x
681
683
True
682
684
sage: A.dagger(G[1,-1] * G[1,1]) == A.dagger(G[1,1]) * A.dagger(G[1,-1])
683
685
True
@@ -687,4 +689,3 @@ def dagger(self):
687
689
True
688
690
"""
689
691
return self .module_morphism (self ._dagger_on_basis , codomain = self )
690
-
0 commit comments