@@ -1396,9 +1396,9 @@ def _latex_(self) -> str:
1396
1396
return self .hasse_diagram ()._latex_ ()
1397
1397
1398
1398
def tikz (self , format = None , edge_labels = False , color_by_label = False ,
1399
- prog = 'dot' , rankdir = 'up' , standalone_config = None ,
1400
- usepackage = None , usetikzlibrary = None , macros = None ,
1401
- use_sage_preamble = None , ** kwds ):
1399
+ prog = 'dot' , rankdir = 'up' , standalone_config = None ,
1400
+ usepackage = None , usetikzlibrary = None , macros = None ,
1401
+ use_sage_preamble = None , ** kwds ):
1402
1402
r"""
1403
1403
Return a TikzPicture illustrating the poset.
1404
1404
@@ -1460,10 +1460,10 @@ def tikz(self, format=None, edge_labels=False, color_by_label=False,
1460
1460
"""
1461
1461
G = self .hasse_diagram ()
1462
1462
return G .tikz (format = format , edge_labels = edge_labels ,
1463
- color_by_label = color_by_label , prog = prog , rankdir = rankdir ,
1464
- standalone_config = standalone_config , usepackage = usepackage ,
1465
- usetikzlibrary = usetikzlibrary , macros = macros ,
1466
- use_sage_preamble = use_sage_preamble , ** kwds )
1463
+ color_by_label = color_by_label , prog = prog , rankdir = rankdir ,
1464
+ standalone_config = standalone_config , usepackage = usepackage ,
1465
+ usetikzlibrary = usetikzlibrary , macros = macros ,
1466
+ use_sage_preamble = use_sage_preamble , ** kwds )
1467
1467
1468
1468
def _repr_ (self ) -> str :
1469
1469
r"""
@@ -3596,8 +3596,8 @@ def dimension(self, certificate=False, *, solver=None, integrality_tolerance=1e-
3596
3596
3597
3597
ALGORITHM:
3598
3598
3599
- As explained [FT00]_, the dimension of a poset is equal to the (weak)
3600
- chromatic number of a hypergraph. More precisely:
3599
+ As explained in [FT00]_, the dimension of a poset is equal to
3600
+ the (weak) chromatic number of a hypergraph. More precisely:
3601
3601
3602
3602
Let `inc(P)` be the set of (ordered) pairs of incomparable elements
3603
3603
of `P`, i.e. all `uv` and `vu` such that `u\not \leq_P v` and `v\not
@@ -7776,13 +7776,17 @@ def chain_polynomial(self):
7776
7776
elements in the poset. List of coefficients of this polynomial
7777
7777
is also called a *f-vector* of the poset.
7778
7778
7779
+ This is multiplicative with respect to ordinal sum.
7780
+
7779
7781
.. NOTE::
7780
7782
7781
7783
This is not what has been called the chain polynomial
7782
7784
in [St1986]_. The latter is identical with the order
7783
7785
polynomial in SageMath (:meth:`order_polynomial`).
7784
7786
7785
- .. SEEALSO:: :meth:`f_polynomial`, :meth:`order_polynomial`
7787
+ .. SEEALSO::
7788
+
7789
+ :meth:`f_polynomial`, :meth:`order_polynomial`, :meth:`ordinal_sum`
7786
7790
7787
7791
EXAMPLES::
7788
7792
0 commit comments