Skip to content

Commit 83e0322

Browse files
committed
fix a bunch of typos
1 parent 4541564 commit 83e0322

File tree

10 files changed

+38
-36
lines changed

10 files changed

+38
-36
lines changed

src/sage/combinat/words/finite_word.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -217,6 +217,7 @@
217217
from itertools import repeat
218218
from collections import defaultdict
219219
from itertools import islice, cycle
220+
220221
from sage.combinat.words.abstract_word import Word_class
221222
from sage.combinat.words.words import Words
222223
from sage.misc.cachefunc import cached_method
@@ -2622,7 +2623,7 @@ def palindromic_lacunas_study(self, f=None):
26222623
and lacunas of ``self`` (see [BMBL2008]_ and [BMBFLR2008]_).
26232624
26242625
Note that a word `w` has at most `|w| + 1` different palindromic factors
2625-
(see [DJP2001]_). For `f`-palindromes (or pseudopalidromes or theta-palindromes),
2626+
(see [DJP2001]_). For `f`-palindromes (or pseudopalindromes or theta-palindromes),
26262627
the maximum number of `f`-palindromic factors is `|w|+1-g_f(w)`, where
26272628
`g_f(w)` is the number of pairs `\{a, f(a)\}` such that `a` is a letter,
26282629
`a` is not equal to `f(a)`, and `a` or `f(a)` occurs in `w`, see [Star2011]_.

src/sage/dynamics/arithmetic_dynamics/berkovich_ds.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
r"""
2-
Dynamical systmes on Berkovich space over `\CC_p`.
2+
Dynamical systems on Berkovich space over `\CC_p`.
33
44
A dynamical system on Berkovich space over `\CC_p` is
55
determined by a dynamical system on `A^1(\CC_p)` or `P^1(\CC_p)`,

src/sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py

Lines changed: 19 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -1907,7 +1907,7 @@ def conjugating_set_initializer(f, g):
19071907
repeated_mult_L[repeated] += [mult_to_point_L[mult_L]]
19081908
more = True
19091909

1910-
# the n+2 points to be used to specificy PGL conjugations
1910+
# the n+2 points to be used to specify PGL conjugations
19111911
source = []
19121912

19131913
# a list of tuples of the form ((multiplier, level), repeat) where the
@@ -1997,9 +1997,10 @@ def conjugating_set_initializer(f, g):
19971997
for r in sorted(repeated_mult_L.keys()):
19981998
for point_lst in repeated_mult_L[r]:
19991999
all_points += point_lst
2000-
# this loop is quite long, so we break after finding the first subset
2001-
# with the desired property. There is, however, no guarentee that the
2002-
# subset we found minimizes the combinatorics when checking conjugations
2000+
# this loop is quite long, so we break after finding the
2001+
# first subset with the desired property. There is,
2002+
# however, no guarantee that the subset we found minimizes
2003+
# the combinatorics when checking conjugations
20032004
for subset in Subsets(range(len(all_points)), n+2):
20042005
source = []
20052006
for i in subset:
@@ -2166,10 +2167,10 @@ def conjugating_set_helper(f, g, num_cpus, source, possible_targets):
21662167
subset_iterators.append(Subsets(range(len(lst[0])), lst[1]))
21672168

21682169
# helper function for parallelization
2169-
# given a list of tuples which specify indicies of possible target points
2170-
# in possible_targets, check all arragements of those possible target points
2171-
# and if any of them define a conjugation which sends f to g, return
2172-
# those conjugations as a list
2170+
# given a list of tuples which specify indices of possible target
2171+
# points in possible_targets, check all arrangements of those
2172+
# possible target points and if any of them define a conjugation
2173+
# which sends f to g, return those conjugations as a list
21732174
def find_conjugations_subset(tuples):
21742175
conj = []
21752176
for tup in tuples:
@@ -2195,9 +2196,9 @@ def find_conjugations_subset(tuples):
21952196
return conj
21962197

21972198
# helper function for parallelization
2198-
# given a list of tuples which specify indicies of possible target points
2199-
# in possible_targets, check all possible target points
2200-
# and if any of them define a conjugation which sends f to g, return
2199+
# given a list of tuples which specify indices of possible target
2200+
# points in possible_targets, check all possible target points and
2201+
# if any of them define a conjugation which sends f to g, return
22012202
# those conjugations as a list
22022203
def find_conjugations_arrangement(tuples):
22032204
conj = []
@@ -2229,7 +2230,7 @@ def find_conjugations_arrangement(tuples):
22292230
if ret[1]:
22302231
Conj += ret[1]
22312232
# otherwise, we need to first check linear independence of the subsets
2232-
# and then build a big list of all the arrangemenets to split among
2233+
# and then build a big list of all the arrangements to split among
22332234
# the threads
22342235
else:
22352236
good_targets = []
@@ -2307,9 +2308,10 @@ def is_conjugate_helper(f, g, num_cpus, source, possible_targets):
23072308
subset_iterators.append(Subsets(range(len(lst[0])), lst[1]))
23082309

23092310
# helper function for parallelization
2310-
# given a list of tuples which specify indicies of possible target points
2311-
# in possible_targets, check all arragements of those possible target points
2312-
# and if any of them define a conjugation which sends f to g, return True
2311+
# given a list of tuples which specify indices of possible target
2312+
# points in possible_targets, check all arrangements of those
2313+
# possible target points and if any of them define a conjugation
2314+
# which sends f to g, return True
23132315
def find_conjugations_subset(tuples):
23142316
for tup in tuples:
23152317
target_set = []
@@ -2334,7 +2336,7 @@ def find_conjugations_subset(tuples):
23342336
return False
23352337

23362338
# helper function for parallelization
2337-
# given a list of tuples which specify indicies of possible target points
2339+
# given a list of tuples which specify indices of possible target points
23382340
# in possible_targets, check all possible target points
23392341
# and if any of them define a conjugation which sends f to g, return True
23402342
def find_conjugations_arrangement(tuples):
@@ -2367,7 +2369,7 @@ def find_conjugations_arrangement(tuples):
23672369
is_conj = True
23682370
break
23692371
# otherwise, we need to first check linear independence of the subsets
2370-
# and then build a big list of all the arrangemenets to split among
2372+
# and then build a big list of all the arrangements to split among
23712373
# the threads
23722374
else:
23732375
good_targets = []

src/sage/dynamics/arithmetic_dynamics/projective_ds.py

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -4219,7 +4219,7 @@ def preperiodic_points(self, m, n, **kwds):
42194219
f_deformed = DynamicalSystem(deformed_polys)
42204220

42214221
# after deforming by the parameter, the preperiodic points with multiplicity
4222-
# will seperate into different points. we can now calculate the minimal preperiodic
4222+
# will separate into different points. we can now calculate the minimal preperiodic
42234223
# points with the parameter, and then specialize to get the formal preperiodic points
42244224
ideal = f_deformed.preperiodic_points(m, n, return_scheme=True).defining_ideal()
42254225
L = [poly.specialization({t:0}) for poly in ideal.gens()]
@@ -4569,7 +4569,7 @@ def periodic_points(self, n, minimal=True, formal=False, R=None, algorithm='vari
45694569
f_deformed = DynamicalSystem(deformed_polys)
45704570

45714571
# after deforming by the parameter, the preperiodic points with multiplicity
4572-
# will seperate into different points. we can now calculate the minimal preperiodic
4572+
# will separate into different points. we can now calculate the minimal preperiodic
45734573
# points with the parameter, and then specialize to get the formal periodic points
45744574
ideal = f_deformed.periodic_points(n, return_scheme=True).defining_ideal()
45754575
L = [poly.specialization({t:0}) for poly in ideal.gens()]
@@ -4901,7 +4901,7 @@ def sigma_invariants(self, n, formal=False, embedding=None, type='point',
49014901
49024902
- ``n`` periodic points are repeated, multipliers are all distinct -- to deal
49034903
with this case, we deform the map by a formal parameter `k`. The deformation
4904-
seperates the ``n`` periodic points, making them distinct, and we can recover
4904+
separates the ``n`` periodic points, making them distinct, and we can recover
49054905
the ``n`` periodic points of the original map by specializing `k` to 0.
49064906
This corresponds to ``deform=True``.
49074907
@@ -4952,7 +4952,7 @@ def sigma_invariants(self, n, formal=False, embedding=None, type='point',
49524952
49534953
- ``check`` -- (default: ``True``) boolean; when ``True`` the degree of
49544954
the sigma polynomial is checked against the expected degree. This is
4955-
done as the sigma polynomial may drop degree if multiplicites of periodic
4955+
done as the sigma polynomial may drop degree if multiplicities of periodic
49564956
points or multipliers are not correctly accounted for using ``chow`` or
49574957
``deform``.
49584958
@@ -5236,8 +5236,8 @@ def sigma_invariants(self, n, formal=False, embedding=None, type='point',
52365236
# create polynomial ring for result
52375237
R2 = PolynomialRing(F, var[:N] + var[-2:])
52385238
psi = R2.hom(N*[0]+list(newR.gens()), newR)
5239-
# create substition to set extra variables to 0
5240-
R_zero = {R.gen(N):1}
5239+
# create substitution to set extra variables to 0
5240+
R_zero = {R.gen(N): 1}
52415241
for j in range(N+1, 2*N+1):
52425242
R_zero[R.gen(j)] = 0
52435243
t = var.pop()
@@ -5251,7 +5251,7 @@ def sigma_invariants(self, n, formal=False, embedding=None, type='point',
52515251
w = var.pop()
52525252
sigma_polynomial = 1
52535253
# go through each affine patch to avoid repeating periodic points
5254-
# setting the visited coordiantes to 0 as we go
5254+
# setting the visited coordinates to 0 as we go
52555255
for j in range(N,-1,-1):
52565256
Xa = X.affine_patch(j)
52575257
fa = Fn.dehomogenize(j)
@@ -5308,7 +5308,7 @@ def sigma_invariants(self, n, formal=False, embedding=None, type='point',
53085308
'try setting chow=True and/or deform=True')
53095309
if return_polynomial:
53105310
return sigma_polynomial
5311-
# if we are returing a numerical list, read off the coefficients
5311+
# if we are returning a numerical list, read off the coefficients
53125312
# in order of degree adjusting sign appropriately
53135313
sigmas = []
53145314
sigma_dictionary = dict([list(reversed(i)) for i in list(sigma_polynomial)])
@@ -6833,7 +6833,7 @@ def conjugating_set(self, other, R=None, num_cpus=2):
68336833
by taking the fixed points of one map and mapping
68346834
them to permutations of the fixed points of the other map.
68356835
As conjugacy preserves the multipliers as a set, fixed points
6836-
are only maped to fixed points with the same multiplier.
6836+
are only mapped to fixed points with the same multiplier.
68376837
If there are not enough fixed points the
68386838
function compares the mapping between rational preimages of
68396839
fixed points and the rational preimages of the preimages of

src/sage/ext_data/pari/simon/ell.gp

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1503,7 +1503,7 @@ if( DEBUGLEVEL_ell >= 4, print(" end of bnfredquartique"));
15031503
\\ si bigflag !=0 alors on applique bnfredquartique.
15041504
\\ si flag3 ==1 alors on utilise bnfqfsolve2 (equation aux normes) pour resoudre Legendre
15051505
\\ aut est une liste d'automorphismes connus de bnf
1506-
\\ (ca peut aider a factoriser certains discriminiants).
1506+
\\ (ca peut aider a factoriser certains discriminants).
15071507
\\ ell est de la forme y^2=x^3+A*x^2+B*x+C
15081508
\\ ie ell=[0,A,0,B,C], avec A,B et C entiers.
15091509
\\

src/sage/graphs/graph_decompositions/modular_decomposition.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1278,7 +1278,7 @@ def permute_decomposition(trials, algorithm, vertices, prob, verbose=False):
12781278
t1p = relabel_tree(t1, random_perm)
12791279
assert(equivalent_trees(t1p, t2))
12801280
if verbose:
1281-
print("Passses!")
1281+
print("Passes!")
12821282

12831283

12841284
def random_md_tree(max_depth, max_fan_out, leaf_probability):

src/sage/groups/braid.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -2200,7 +2200,7 @@ def reduced_word(self):
22002200
22012201
.. TODO::
22022202
2203-
Paralellize this function, calculating all summands in the sum
2203+
Parallelize this function, calculating all summands in the sum
22042204
in parallel.
22052205
"""
22062206
M = self._algebra._indices
@@ -2245,7 +2245,7 @@ def eps(self, N):
22452245
22462246
.. TODO::
22472247
2248-
Paralellize this function, calculating all summands in the sum
2248+
Parallelize this function, calculating all summands in the sum
22492249
in parallel.
22502250
"""
22512251
def eps_monom(q_tuple):

src/sage/knots/knotinfo.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -117,7 +117,7 @@
117117
sage: l6sn.sage_link().is_isotopic(l6) # optional - snappy
118118
True
119119
120-
But observe that the name conversion to SnapPy does not distingiush orientation
120+
But observe that the name conversion to SnapPy does not distinguish orientation
121121
types::
122122
123123
sage: L6b = KnotInfo.L6a1_1

src/sage/rings/padics/relaxed_template.pxi

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -702,7 +702,7 @@ cdef class RelaxedElement(pAdicGenericElement):
702702
use the default halting precision of the parent
703703
704704
- ``secure`` -- a boolean (default: ``False`` if ``prec`` is given,
705-
``True`` otherwise); when the elements cannot be distingiushed
705+
``True`` otherwise); when the elements cannot be distinguished
706706
at the given precision, raise an error if ``secure`` is ``True``,
707707
return ``True`` otherwise.
708708

src/sage/rings/polynomial/skew_polynomial_finite_field.pyx

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -822,10 +822,9 @@ cdef class SkewPolynomial_finite_field_dense(SkewPolynomial_finite_order_dense):
822822
factors.reverse()
823823
return Factorization(factors, sort=False, unit=unit)
824824

825-
826825
cdef _factor_uniform_c(self):
827826
r"""
828-
Compute a uniformly distrbuted factorization of ``self``.
827+
Compute a uniformly distributed factorization of ``self``.
829828
830829
This is the low level implementation of :meth:`factor`.
831830
"""

0 commit comments

Comments
 (0)