@@ -226,8 +226,18 @@ def GeneralizedTamariLattice(a, b, m=1):
226
226
def covers (p ):
227
227
return [swap (p , i , m ) for i in range (len (p ) - 1 )
228
228
if not p [i ] and p [i + 1 ]]
229
+
230
+ # TODO check the exact best categories to use
231
+ if m == 0 : # generalized Dyck lattices
232
+ cat = FiniteLatticePosets ().Distributive ()
233
+ elif m == 1 and a == b + 1 : # Tamari lattices
234
+ cat = FiniteLatticePosets ().Trim ().CongruenceUniform ()
235
+ else :
236
+ cat = FiniteLatticePosets ()
237
+
229
238
return LatticePoset ({p : covers (p )
230
- for p in paths_in_triangle (a , b , a , b )}, check = False )
239
+ for p in paths_in_triangle (a , b , a , b )},
240
+ check = False , category = cat )
231
241
232
242
233
243
def TamariLattice (n , m = 1 ):
@@ -264,12 +274,7 @@ def TamariLattice(n, m=1):
264
274
265
275
- [BMFPR2011]_
266
276
"""
267
- T = GeneralizedTamariLattice (m * n + 1 , n , m )
268
- if m == 1 :
269
- T ._refine_category_ (FiniteLatticePosets ().Trim ().CongruenceUniform ())
270
- else :
271
- T ._refine_category_ (FiniteLatticePosets ().Semidistributive ())
272
- return T
277
+ return GeneralizedTamariLattice (m * n + 1 , n , m )
273
278
274
279
275
280
# a variation : the Dexter meet-semilattices
0 commit comments