@@ -4893,7 +4893,7 @@ def independent_set_of_representatives(self, family, solver=None, verbose=0,
4893
4893
@doc_index ("Algorithmically hard stuff" )
4894
4894
def minor (self , H , solver = None , verbose = 0 , induced = False , * , integrality_tolerance = 1e-3 ):
4895
4895
r"""
4896
- Return the vertices of a minor isomorphic to `H` in the current graph.
4896
+ Return the vertices of a minor isomorphic to `H` in the current graph.
4897
4897
4898
4898
We say that a graph `G` has a `H`-minor (or that it has a graph
4899
4899
isomorphic to `H` as a minor), if for all `h\in H`, there exist disjoint
@@ -4907,7 +4907,7 @@ def minor(self, H, solver=None, verbose=0, induced=False, *, integrality_toleran
4907
4907
We say that a graph `G` has an induced `H`-minor (or that it has a
4908
4908
graph isomorphic to `H` as an induced minor), if `H` can be obtained
4909
4909
from an induced subgraph of `G` by contracting edges. Otherwise, `G` is
4910
- said to be `H`-induced minor-free.
4910
+ said to be `H`-induced minor-free.
4911
4911
4912
4912
For more information, see the :wikipedia:`Minor_(graph_theory)`.
4913
4913
@@ -4931,7 +4931,7 @@ def minor(self, H, solver=None, verbose=0, induced=False, *, integrality_toleran
4931
4931
:meth:`MixedIntegerLinearProgram.get_values`.
4932
4932
4933
4933
- ``induced`` -- boolean (default: ``False``); if ``True``, returns an
4934
- induced minor isomorphic to `H` if it exists, and :class:`ValueError` otherwise.
4934
+ induced minor isomorphic to `H` if it exists, and :class:`ValueError` otherwise.
4935
4935
4936
4936
OUTPUT:
4937
4937
@@ -4997,9 +4997,9 @@ def minor(self, H, solver=None, verbose=0, induced=False, *, integrality_toleran
4997
4997
sage: for i in random.randint(10, 30):
4998
4998
....: g.add_edge(random.randint(0, 5), i)
4999
4999
sage: h = graphs.CycleGraph(5) # Create a graph with 5 vertices forming a C5 cycle
5000
- sage: L = g.minor(h, induced=True)
5001
- sage: gg = g.subgraph(flatten(L.values(), max_level = 1))
5002
- sage: _ = [gg.merge_vertices(l) for l in L.values() if len(l)>1]
5000
+ sage: L = g.minor(h, induced=True)
5001
+ sage: gg = g.subgraph(flatten(L.values(), max_level = 1))
5002
+ sage: _ = [gg.merge_vertices(l) for l in L.values() if len(l)>1]
5003
5003
sage: gg.is_isomorphic(h)
5004
5004
True
5005
5005
0 commit comments