Skip to content

Commit 8941758

Browse files
Saatvik RaosaatvikraoIITGN
authored andcommitted
changes for python code style
1 parent ccd25f1 commit 8941758

File tree

1 file changed

+6
-6
lines changed

1 file changed

+6
-6
lines changed

src/sage/graphs/graph.py

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -4893,7 +4893,7 @@ def independent_set_of_representatives(self, family, solver=None, verbose=0,
48934893
@doc_index("Algorithmically hard stuff")
48944894
def minor(self, H, solver=None, verbose=0, induced=False, *, integrality_tolerance=1e-3):
48954895
r"""
4896-
Return the vertices of a minor isomorphic to `H` in the current graph.
4896+
Return the vertices of a minor isomorphic to `H` in the current graph.
48974897
48984898
We say that a graph `G` has a `H`-minor (or that it has a graph
48994899
isomorphic to `H` as a minor), if for all `h\in H`, there exist disjoint
@@ -4907,7 +4907,7 @@ def minor(self, H, solver=None, verbose=0, induced=False, *, integrality_toleran
49074907
We say that a graph `G` has an induced `H`-minor (or that it has a
49084908
graph isomorphic to `H` as an induced minor), if `H` can be obtained
49094909
from an induced subgraph of `G` by contracting edges. Otherwise, `G` is
4910-
said to be `H`-induced minor-free.
4910+
said to be `H`-induced minor-free.
49114911
49124912
For more information, see the :wikipedia:`Minor_(graph_theory)`.
49134913
@@ -4931,7 +4931,7 @@ def minor(self, H, solver=None, verbose=0, induced=False, *, integrality_toleran
49314931
:meth:`MixedIntegerLinearProgram.get_values`.
49324932
49334933
- ``induced`` -- boolean (default: ``False``); if ``True``, returns an
4934-
induced minor isomorphic to `H` if it exists, and :class:`ValueError` otherwise.
4934+
induced minor isomorphic to `H` if it exists, and :class:`ValueError` otherwise.
49354935
49364936
OUTPUT:
49374937
@@ -4997,9 +4997,9 @@ def minor(self, H, solver=None, verbose=0, induced=False, *, integrality_toleran
49974997
sage: for i in random.randint(10, 30):
49984998
....: g.add_edge(random.randint(0, 5), i)
49994999
sage: h = graphs.CycleGraph(5) # Create a graph with 5 vertices forming a C5 cycle
5000-
sage: L = g.minor(h, induced=True)
5001-
sage: gg = g.subgraph(flatten(L.values(), max_level = 1))
5002-
sage: _ = [gg.merge_vertices(l) for l in L.values() if len(l)>1]
5000+
sage: L = g.minor(h, induced=True)
5001+
sage: gg = g.subgraph(flatten(L.values(), max_level = 1))
5002+
sage: _ = [gg.merge_vertices(l) for l in L.values() if len(l)>1]
50035003
sage: gg.is_isomorphic(h)
50045004
True
50055005

0 commit comments

Comments
 (0)