|
31 | 31 | from sage.matrix.constructor import matrix
|
32 | 32 | from sage.structure.element import Matrix
|
33 | 33 |
|
| 34 | + |
34 | 35 | class qCommutingPolynomials_generic(CombinatorialFreeModule):
|
35 | 36 | r"""
|
36 | 37 | Base class for algebra of `q`-commuting (Laurent, etc.) polynomials.
|
@@ -81,8 +82,8 @@ def __classcall__(cls, q, n=None, B=None, base_ring=None, names=None):
|
81 | 82 | B = matrix.zero(ZZ, n)
|
82 | 83 | for i in range(n):
|
83 | 84 | for j in range(i+1, n):
|
84 |
| - B[i,j] = 1 |
85 |
| - B[j,i] = -1 |
| 85 | + B[i, j] = 1 |
| 86 | + B[j, i] = -1 |
86 | 87 | B.set_immutable()
|
87 | 88 | else:
|
88 | 89 | if not B.is_skew_symmetric():
|
@@ -170,7 +171,7 @@ def algebra_generators(self):
|
170 | 171 | sage: R.algebra_generators()
|
171 | 172 | Finite family {'x': x, 'y': y, 'z': z}
|
172 | 173 | """
|
173 |
| - d = {v: self.gen(i) for i,v in enumerate(self.variable_names())} |
| 174 | + d = {v: self.gen(i) for i, v in enumerate(self.variable_names())} |
174 | 175 | return Family(self.variable_names(), d.__getitem__, name="generator")
|
175 | 176 |
|
176 | 177 | def degree_on_basis(self, m):
|
@@ -494,7 +495,7 @@ def _latex_(self):
|
494 | 495 | \mathrm{Frac}(\Bold{Z}[q])[x^{\pm}, y^{\pm}, z^{\pm}]_{q}
|
495 | 496 | """
|
496 | 497 | from sage.misc.latex import latex
|
497 |
| - names = ", ".join(r"{}^{{\pm}}".format(v) for v in self.variable_names()) |
| 498 | + names = ", ".join(r"{}^{{\pm}}".format(v) for v in self.variable_names()) |
498 | 499 | return "{}[{}]_{{{}}}".format(latex(self.base_ring()), names, self._q)
|
499 | 500 |
|
500 | 501 | def _repr_term(self, m):
|
@@ -663,7 +664,8 @@ def __invert__(self):
|
663 | 664 | m, c = next(iter(self._monomial_coefficients.items()))
|
664 | 665 | ret = -m
|
665 | 666 | n = len(m)
|
666 |
| - qpow = sum(exp * sum(B[j, i] * m[j] for j in range(i+1,n)) for i, exp in enumerate(m) if exp) |
| 667 | + qpow = sum(exp * sum(B[j, i] * m[j] for j in range(i+1, n)) |
| 668 | + for i, exp in enumerate(m) if exp) |
667 | 669 | ret.set_immutable()
|
668 | 670 | return P.term(ret, ~c * q**-qpow)
|
669 | 671 | return super().__invert__()
|
0 commit comments