@@ -1837,7 +1837,7 @@ def compute_product(self, n, la):
1837
1837
sage: f = Stream_zero(True) # irrelevant for this test
1838
1838
sage: g = Stream_exact([s[2], s[3]], False, 0, 4, 2)
1839
1839
sage: h = Stream_plethysm(f, g, p)
1840
- sage: A = h._compute_product (7, Partition([2, 1])); A
1840
+ sage: A = h.compute_product (7, Partition([2, 1])); A
1841
1841
1/12*p[2, 2, 1, 1, 1] + 1/4*p[2, 2, 2, 1] + 1/6*p[3, 2, 2]
1842
1842
+ 1/12*p[4, 1, 1, 1] + 1/4*p[4, 2, 1] + 1/6*p[4, 3]
1843
1843
sage: A == p[2, 1](s[2] + s[3]).homogeneous_component(7)
@@ -1847,7 +1847,7 @@ def compute_product(self, n, la):
1847
1847
sage: f = Stream_zero(True) # irrelevant for this test
1848
1848
sage: g = Stream_function(lambda n: sum(tensor([p[k], p[n-k]]) for k in range(n+1)), p2, True, 1)
1849
1849
sage: h = Stream_plethysm(f, g, p2)
1850
- sage: A = h._compute_product (7, Partition([2, 1]))
1850
+ sage: A = h.compute_product (7, Partition([2, 1]))
1851
1851
sage: B = p[2, 1](sum(g[n] for n in range(7)))
1852
1852
sage: B = p2.element_class(p2, {m: c for m, c in B if sum(mu.size() for mu in m) == 7})
1853
1853
sage: A == B
@@ -1857,7 +1857,7 @@ def compute_product(self, n, la):
1857
1857
sage: g = Stream_function(lambda n: s[n], p, True, 0)
1858
1858
sage: h = Stream_plethysm(f, g, p)
1859
1859
sage: B = p[2, 2, 1](sum(s[i] for i in range(7)))
1860
- sage: all(h._compute_product (k, Partition([2, 2, 1])) == B.restrict_degree(k) for k in range(7))
1860
+ sage: all(h.compute_product (k, Partition([2, 2, 1])) == B.restrict_degree(k) for k in range(7))
1861
1861
True
1862
1862
"""
1863
1863
# This is the approximate order of the result
@@ -1897,15 +1897,15 @@ def stretched_power_restrict_degree(self, i, m, d):
1897
1897
sage: f = Stream_zero(False) # irrelevant for this test
1898
1898
sage: g = Stream_exact([s[2], s[3]], False, 0, 4, 2)
1899
1899
sage: h = Stream_plethysm(f, g, p)
1900
- sage: A = h._stretched_power_restrict_degree (2, 3, 6)
1900
+ sage: A = h.stretched_power_restrict_degree (2, 3, 6)
1901
1901
sage: A == p[2,2,2](s[2] + s[3]).homogeneous_component(12)
1902
1902
True
1903
1903
1904
1904
sage: p2 = tensor([p, p])
1905
1905
sage: f = Stream_zero(True) # irrelevant for this test
1906
1906
sage: g = Stream_function(lambda n: sum(tensor([p[k], p[n-k]]) for k in range(n+1)), p2, True, 1)
1907
1907
sage: h = Stream_plethysm(f, g, p2)
1908
- sage: A = h._stretched_power_restrict_degree (2, 3, 6)
1908
+ sage: A = h.stretched_power_restrict_degree (2, 3, 6)
1909
1909
sage: B = p[2,2,2](sum(g[n] for n in range(7)))
1910
1910
sage: B = p2.element_class(p2, {m: c for m, c in B if sum(mu.size() for mu in m) == 12})
1911
1911
sage: A == B
0 commit comments