Skip to content

Commit 8af380b

Browse files
committed
Merge branch 'u/mantepse/implement_derivatives_of_lazy_series' of trac.sagemath.org:sage into t/34422/implement_functorial_composition_of_lazy_symmetric_functiosn
2 parents 29c6545 + 9124987 commit 8af380b

File tree

2 files changed

+6
-7
lines changed

2 files changed

+6
-7
lines changed

src/sage/combinat/partition.py

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1066,8 +1066,7 @@ def stretch(self, k):
10661066
10671067
sage: p = Partition([4,2,2,1,1])
10681068
sage: p.stretch(3)
1069-
[12,6,6,3,3]
1070-
1069+
[12, 6, 6, 3, 3]
10711070
"""
10721071
return _Partitions([k * p for p in self])
10731072

src/sage/data_structures/stream.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1837,7 +1837,7 @@ def compute_product(self, n, la):
18371837
sage: f = Stream_zero(True) # irrelevant for this test
18381838
sage: g = Stream_exact([s[2], s[3]], False, 0, 4, 2)
18391839
sage: h = Stream_plethysm(f, g, p)
1840-
sage: A = h._compute_product(7, Partition([2, 1])); A
1840+
sage: A = h.compute_product(7, Partition([2, 1])); A
18411841
1/12*p[2, 2, 1, 1, 1] + 1/4*p[2, 2, 2, 1] + 1/6*p[3, 2, 2]
18421842
+ 1/12*p[4, 1, 1, 1] + 1/4*p[4, 2, 1] + 1/6*p[4, 3]
18431843
sage: A == p[2, 1](s[2] + s[3]).homogeneous_component(7)
@@ -1847,7 +1847,7 @@ def compute_product(self, n, la):
18471847
sage: f = Stream_zero(True) # irrelevant for this test
18481848
sage: g = Stream_function(lambda n: sum(tensor([p[k], p[n-k]]) for k in range(n+1)), p2, True, 1)
18491849
sage: h = Stream_plethysm(f, g, p2)
1850-
sage: A = h._compute_product(7, Partition([2, 1]))
1850+
sage: A = h.compute_product(7, Partition([2, 1]))
18511851
sage: B = p[2, 1](sum(g[n] for n in range(7)))
18521852
sage: B = p2.element_class(p2, {m: c for m, c in B if sum(mu.size() for mu in m) == 7})
18531853
sage: A == B
@@ -1857,7 +1857,7 @@ def compute_product(self, n, la):
18571857
sage: g = Stream_function(lambda n: s[n], p, True, 0)
18581858
sage: h = Stream_plethysm(f, g, p)
18591859
sage: B = p[2, 2, 1](sum(s[i] for i in range(7)))
1860-
sage: all(h._compute_product(k, Partition([2, 2, 1])) == B.restrict_degree(k) for k in range(7))
1860+
sage: all(h.compute_product(k, Partition([2, 2, 1])) == B.restrict_degree(k) for k in range(7))
18611861
True
18621862
"""
18631863
# This is the approximate order of the result
@@ -1897,15 +1897,15 @@ def stretched_power_restrict_degree(self, i, m, d):
18971897
sage: f = Stream_zero(False) # irrelevant for this test
18981898
sage: g = Stream_exact([s[2], s[3]], False, 0, 4, 2)
18991899
sage: h = Stream_plethysm(f, g, p)
1900-
sage: A = h._stretched_power_restrict_degree(2, 3, 6)
1900+
sage: A = h.stretched_power_restrict_degree(2, 3, 6)
19011901
sage: A == p[2,2,2](s[2] + s[3]).homogeneous_component(12)
19021902
True
19031903
19041904
sage: p2 = tensor([p, p])
19051905
sage: f = Stream_zero(True) # irrelevant for this test
19061906
sage: g = Stream_function(lambda n: sum(tensor([p[k], p[n-k]]) for k in range(n+1)), p2, True, 1)
19071907
sage: h = Stream_plethysm(f, g, p2)
1908-
sage: A = h._stretched_power_restrict_degree(2, 3, 6)
1908+
sage: A = h.stretched_power_restrict_degree(2, 3, 6)
19091909
sage: B = p[2,2,2](sum(g[n] for n in range(7)))
19101910
sage: B = p2.element_class(p2, {m: c for m, c in B if sum(mu.size() for mu in m) == 12})
19111911
sage: A == B

0 commit comments

Comments
 (0)