@@ -16,7 +16,6 @@ AUTHOR:
1616from cysignals.signals cimport sig_on, sig_off
1717
1818from sage.libs.ntl.ntl_ZZ_pEContext cimport ntl_ZZ_pEContext_class
19- from sage.libs.ntl.ntl_ZZ_pE cimport ntl_ZZ_pE
2019from sage.libs.ntl.ZZ_pE cimport ZZ_pE_to_ZZ_pX
2120from sage.libs.ntl.ZZ_pX cimport ZZ_pX_deg, ZZ_pX_coeff
2221from sage.libs.ntl.ZZ_p cimport ZZ_p_rep
@@ -26,22 +25,23 @@ from sage.libs.ntl.convert cimport ZZ_to_mpz
2625# to make sure the function get_cparent is found since it is used in
2726# 'polynomial_template.pxi'.
2827
29- cdef cparent get_cparent(parent) except ? NULL :
28+ cdef cparent get_cparent(parent) except ? NULL :
3029 if parent is None :
3130 return NULL
3231 cdef ntl_ZZ_pEContext_class pec
3332 try :
3433 pec = parent._modulus
3534 except AttributeError :
3635 return NULL
37- return & (pec.ptrs)
36+ return & (pec.ptrs)
3837
3938# first we include the definitions
4039include " sage/libs/ntl/ntl_ZZ_pEX_linkage.pxi"
4140
4241# and then the interface
4342include " polynomial_template.pxi"
4443
44+ from sage.libs.ntl.ntl_ZZ_pE cimport ntl_ZZ_pE
4545
4646cdef inline ZZ_pE_c_to_list(ZZ_pE_c x):
4747 cdef list L = []
@@ -52,12 +52,12 @@ cdef inline ZZ_pE_c_to_list(ZZ_pE_c x):
5252
5353 c_pX = ZZ_pE_to_ZZ_pX(x)
5454 d = ZZ_pX_deg(c_pX)
55- if d >= 0 :
55+ if d>= 0 :
5656 for 0 <= j <= d:
5757 c_p = ZZ_pX_coeff(c_pX, j)
5858 c_c = ZZ_p_rep(c_p)
5959 ans = Integer.__new__ (Integer)
60- ZZ_to_mpz(ans.value, & c_c)
60+ ZZ_to_mpz(ans.value, & c_c)
6161 L.append(ans)
6262 return L
6363
@@ -73,7 +73,6 @@ cdef class Polynomial_ZZ_pEX(Polynomial_template):
7373 sage: ( x^ 3 + a* x^ 2 + 1) * ( x + a)
7474 x^ 4 + 2* a* x^ 3 + a^ 2* x^ 2 + x + a
7575 """
76-
7776 def __init__ (self , parent , x = None , check = True , is_gen = False , construct = False ):
7877 r """
7978 Create a new univariate polynomials over `\G F{p^ n}`.
@@ -125,8 +124,8 @@ cdef class Polynomial_ZZ_pEX(Polynomial_template):
125124 try :
126125 if (x.parent() is parent.base_ring()) or (x.parent() == parent.base_ring()):
127126 Polynomial.__init__ (self , parent, is_gen = is_gen)
128- ( < Polynomial_template > self )._cparent = get_cparent(parent)
129- celement_construct(& self .x, ( < Polynomial_template > self )._cparent)
127+ (< Polynomial_template> self )._cparent = get_cparent(parent)
128+ celement_construct(& self .x, (< Polynomial_template> self )._cparent)
130129 d = parent._modulus.ZZ_pE(list (x.polynomial()))
131130 ZZ_pEX_SetCoeff(self .x, 0 , d.x)
132131 return
@@ -138,10 +137,10 @@ cdef class Polynomial_ZZ_pEX(Polynomial_template):
138137
139138 if isinstance (x, (list , tuple )):
140139 Polynomial.__init__ (self , parent, is_gen = is_gen)
141- ( < Polynomial_template > self )._cparent = get_cparent(parent)
142- celement_construct(& self .x, ( < Polynomial_template > self )._cparent)
140+ (< Polynomial_template> self )._cparent = get_cparent(parent)
141+ celement_construct(& self .x, (< Polynomial_template> self )._cparent)
143142 K = parent.base_ring()
144- for i, e in enumerate (x):
143+ for i,e in enumerate (x):
145144 # self(x) is supposed to be a conversion,
146145 # not necessarily a coercion. So, we must
147146 # not do K.coerce(e) but K(e).
@@ -196,7 +195,7 @@ cdef class Polynomial_ZZ_pEX(Polynomial_template):
196195
197196 K = self ._parent.base_ring()
198197 return [K(ZZ_pE_c_to_list(ZZ_pEX_coeff(self .x, i)))
199- for i in range (celement_len(& self .x, ( < Polynomial_template > self )._cparent))]
198+ for i in range (celement_len(& self .x, (< Polynomial_template> self )._cparent))]
200199
201200 cpdef _lmul_(self , Element left):
202201 r """
@@ -212,9 +211,9 @@ cdef class Polynomial_ZZ_pEX(Polynomial_template):
212211 cdef ntl_ZZ_pE d
213212 cdef Polynomial_ZZ_pEX r
214213 r = Polynomial_ZZ_pEX.__new__ (Polynomial_ZZ_pEX)
215- celement_construct(& r.x, ( < Polynomial_template > self )._cparent)
216- r._parent = ( < Polynomial_template > self )._parent
217- r._cparent = ( < Polynomial_template > self )._cparent
214+ celement_construct(& r.x, (< Polynomial_template> self )._cparent)
215+ r._parent = (< Polynomial_template> self )._parent
216+ r._cparent = (< Polynomial_template> self )._cparent
218217 d = self ._parent._modulus.ZZ_pE(list (left.polynomial()))
219218 ZZ_pEX_mul_ZZ_pE(r.x, self .x, d.x)
220219 return r
@@ -263,15 +262,15 @@ cdef class Polynomial_ZZ_pEX(Polynomial_template):
263262
264263 if kwds:
265264 if x:
266- raise TypeError (" %s __call__() takes exactly 1 argument" % type (self ))
265+ raise TypeError (" %s __call__() takes exactly 1 argument" % type (self ))
267266 try :
268267 x = [kwds.pop(self .variable_name())]
269268 except KeyError :
270269 pass
271270 if kwds:
272- raise TypeError (" %s __call__() accepts no named argument except '%s '" % (type (self ), self .variable_name()))
273- if len (x) ! = 1 :
274- raise TypeError (" %s __call__() takes exactly 1 positional argument" % type (self ))
271+ raise TypeError (" %s __call__() accepts no named argument except '%s '" % (type (self ),self .variable_name()))
272+ if len (x)! = 1 :
273+ raise TypeError (" %s __call__() takes exactly 1 positional argument" % type (self ))
275274
276275 a = x[0 ]
277276 try :
@@ -311,7 +310,7 @@ cdef class Polynomial_ZZ_pEX(Polynomial_template):
311310 if other.parent() is not self ._parent:
312311 other = self ._parent.coerce(other)
313312
314- ZZ_pEX_resultant(r, self .x, ( < Polynomial_ZZ_pEX > other).x)
313+ ZZ_pEX_resultant(r, self .x, (< Polynomial_ZZ_pEX> other).x)
315314
316315 K = self ._parent.base_ring()
317316 return K(K.polynomial_ring()(ZZ_pE_c_to_list(r)))
@@ -350,15 +349,15 @@ cdef class Polynomial_ZZ_pEX(Polynomial_template):
350349 False
351350 """
352351 self ._parent._modulus.restore()
353- if algorithm == " fast_when_false" :
352+ if algorithm== " fast_when_false" :
354353 sig_on()
355354 res = ZZ_pEX_IterIrredTest(self .x)
356355 sig_off()
357- elif algorithm == " fast_when_true" :
356+ elif algorithm== " fast_when_true" :
358357 sig_on()
359358 res = ZZ_pEX_DetIrredTest(self .x)
360359 sig_off()
361- elif algorithm == " probabilistic" :
360+ elif algorithm== " probabilistic" :
362361 sig_on()
363362 res = ZZ_pEX_ProbIrredTest(self .x, iter )
364363 sig_off()
@@ -403,11 +402,11 @@ cdef class Polynomial_ZZ_pEX(Polynomial_template):
403402
404403 cdef Polynomial_ZZ_pEX r
405404 r = Polynomial_ZZ_pEX.__new__ (Polynomial_ZZ_pEX)
406- celement_construct(& r.x, ( < Polynomial_template > self )._cparent)
407- r._parent = ( < Polynomial_template > self )._parent
408- r._cparent = ( < Polynomial_template > self )._cparent
405+ celement_construct(& r.x, (< Polynomial_template> self )._cparent)
406+ r._parent = (< Polynomial_template> self )._parent
407+ r._cparent = (< Polynomial_template> self )._cparent
409408
410- ZZ_pEX_MinPolyMod(r.x, ( < Polynomial_ZZ_pEX > (self % other)).x, ( < Polynomial_ZZ_pEX > other).x)
409+ ZZ_pEX_MinPolyMod(r.x, (< Polynomial_ZZ_pEX> (self % other)).x, (< Polynomial_ZZ_pEX> other).x)
411410 return r
412411
413412 cpdef _richcmp_(self , other, int op):
@@ -453,9 +452,9 @@ cdef class Polynomial_ZZ_pEX(Polynomial_template):
453452 self ._parent._modulus.restore()
454453 cdef Polynomial_ZZ_pEX r
455454 r = Polynomial_ZZ_pEX.__new__ (Polynomial_ZZ_pEX)
456- celement_construct(& r.x, ( < Polynomial_template > self )._cparent)
457- r._parent = ( < Polynomial_template > self )._parent
458- r._cparent = ( < Polynomial_template > self )._cparent
455+ celement_construct(& r.x, (< Polynomial_template> self )._cparent)
456+ r._parent = (< Polynomial_template> self )._parent
457+ r._cparent = (< Polynomial_template> self )._cparent
459458 ZZ_pEX_LeftShift(r.x, self .x, n)
460459 return r
461460
@@ -527,9 +526,9 @@ cdef class Polynomial_ZZ_pEX(Polynomial_template):
527526 # Construct output polynomial
528527 cdef Polynomial_ZZ_pEX r
529528 r = Polynomial_ZZ_pEX.__new__ (Polynomial_ZZ_pEX)
530- celement_construct(& r.x, ( < Polynomial_template > self )._cparent)
531- r._parent = ( < Polynomial_template > self )._parent
532- r._cparent = ( < Polynomial_template > self )._cparent
529+ celement_construct(& r.x, (< Polynomial_template> self )._cparent)
530+ r._parent = (< Polynomial_template> self )._parent
531+ r._cparent = (< Polynomial_template> self )._cparent
533532
534533 # When a degree has been supplied, ensure it is a valid input
535534 cdef unsigned long d
@@ -540,9 +539,9 @@ cdef class Polynomial_ZZ_pEX(Polynomial_template):
540539 d = degree
541540 except ValueError :
542541 raise ValueError (" degree argument must be a non-negative integer, got %s " % (degree))
543- ZZ_pEX_reverse_hi(r.x, ( < Polynomial_ZZ_pEX > self ).x, d)
542+ ZZ_pEX_reverse_hi(r.x, (< Polynomial_ZZ_pEX> self ).x, d)
544543 else :
545- ZZ_pEX_reverse(r.x, ( < Polynomial_ZZ_pEX > self ).x)
544+ ZZ_pEX_reverse(r.x, (< Polynomial_ZZ_pEX> self ).x)
546545 return r
547546
548547 def inverse_series_trunc (self , prec ):
@@ -602,9 +601,9 @@ cdef class Polynomial_ZZ_pEX(Polynomial_template):
602601 # Construct output polynomial
603602 cdef Polynomial_ZZ_pEX r
604603 r = Polynomial_ZZ_pEX.__new__ (Polynomial_ZZ_pEX)
605- celement_construct(& r.x, (< Polynomial_template > self )._cparent)
606- r._parent = (< Polynomial_template > self )._parent
607- r._cparent = (< Polynomial_template > self )._cparent
604+ celement_construct(& r.x, (< Polynomial_template> self )._cparent)
605+ r._parent = (< Polynomial_template> self )._parent
606+ r._cparent = (< Polynomial_template> self )._cparent
608607
609608 # Call to NTL for the inverse truncation
610609 if prec > 0 :
0 commit comments