@@ -49,6 +49,48 @@ class FreeModulePseudoMorphism(Morphism):
4949
5050 The implementation currently requires that `M` and `M'`
5151 are free modules.
52+ .. WARNING::
53+
54+ At the moment, it is not possible to specify both a twisting
55+ endomorphism and a twisting derivation. Only one of those can be
56+ used, preferably using the `twist` argument in the method
57+ :meth:`sage.rings.module.free_module.FreeModule_generic.pseudohom`.
58+
59+ We represent pseudo morphisms by matrices with coefficient in the
60+ base ring `R`. The matrix `\mathcal M_f` representing a pseudo
61+ morphism is such that its lines (resp. columns if ``side`` is
62+ ``"right"``) are the coordinates of the images of the distinguished
63+ basis of the domain (see also method :meth:`matrix`). More
64+ concretely, let `n` (resp. `n'`) be the dimension of `M` (resp.
65+ `M'`), let `(e_1, \dots, e_n)` be a basis of `M`. For any `x =
66+ \sum_{i=1}^n x_i e_i \in M`, we have
67+
68+ .. MATH::
69+
70+ f(x) = \begin{pmatrix}
71+ \theta(x_1) & \cdots & \theta(x_n)
72+ \end{pmatrix}
73+ \mathcal M_f
74+ +
75+ \begin{pmatrix}
76+ \delta(x_1) & \cdots & \theta(x_n)
77+ \end{pmatrix}
78+ .
79+
80+ If ``side`` is ``"right"``, we have:
81+
82+ .. MATH::
83+
84+ f(x) = \mathcal M_f
85+ \begin{pmatrix}
86+ \theta(x_1) \\ \vdots \\ \theta(x_n)
87+ \end{pmatrix}
88+
89+ +
90+ \begin{pmatrix}
91+ \delta(x_1) \\ \vdots \\ \theta(x_n)
92+ \end{pmatrix}
93+ .
5294
5395 This class is not supposed to be instantiated directly; the user should
5496 use instead the method :meth:`sage.rings.module.free_module.FreeModule_generic.pseudohom`
0 commit comments