Skip to content

Commit 90b7ca8

Browse files
xcarusokryzar
andauthored
Update src/sage/modules/free_module_pseudomorphism.py
Co-authored-by: Antoine Leudière <[email protected]>
1 parent a3f602e commit 90b7ca8

File tree

1 file changed

+42
-0
lines changed

1 file changed

+42
-0
lines changed

src/sage/modules/free_module_pseudomorphism.py

Lines changed: 42 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -49,6 +49,48 @@ class FreeModulePseudoMorphism(Morphism):
4949
5050
The implementation currently requires that `M` and `M'`
5151
are free modules.
52+
.. WARNING::
53+
54+
At the moment, it is not possible to specify both a twisting
55+
endomorphism and a twisting derivation. Only one of those can be
56+
used, preferably using the `twist` argument in the method
57+
:meth:`sage.rings.module.free_module.FreeModule_generic.pseudohom`.
58+
59+
We represent pseudo morphisms by matrices with coefficient in the
60+
base ring `R`. The matrix `\mathcal M_f` representing a pseudo
61+
morphism is such that its lines (resp. columns if ``side`` is
62+
``"right"``) are the coordinates of the images of the distinguished
63+
basis of the domain (see also method :meth:`matrix`). More
64+
concretely, let `n` (resp. `n'`) be the dimension of `M` (resp.
65+
`M'`), let `(e_1, \dots, e_n)` be a basis of `M`. For any `x =
66+
\sum_{i=1}^n x_i e_i \in M`, we have
67+
68+
.. MATH::
69+
70+
f(x) = \begin{pmatrix}
71+
\theta(x_1) & \cdots & \theta(x_n)
72+
\end{pmatrix}
73+
\mathcal M_f
74+
+
75+
\begin{pmatrix}
76+
\delta(x_1) & \cdots & \theta(x_n)
77+
\end{pmatrix}
78+
.
79+
80+
If ``side`` is ``"right"``, we have:
81+
82+
.. MATH::
83+
84+
f(x) = \mathcal M_f
85+
\begin{pmatrix}
86+
\theta(x_1) \\ \vdots \\ \theta(x_n)
87+
\end{pmatrix}
88+
89+
+
90+
\begin{pmatrix}
91+
\delta(x_1) \\ \vdots \\ \theta(x_n)
92+
\end{pmatrix}
93+
.
5294
5395
This class is not supposed to be instantiated directly; the user should
5496
use instead the method :meth:`sage.rings.module.free_module.FreeModule_generic.pseudohom`

0 commit comments

Comments
 (0)