@@ -423,7 +423,7 @@ def regenerated(self):
423
423
424
424
ALGORITHM:
425
425
426
- Theorem B of [HKL2021 ]_ with `n_0 = 1`.
426
+ Theorem B of [HKL2022 ]_ with `n_0 = 1`.
427
427
428
428
EXAMPLES::
429
429
@@ -1833,7 +1833,7 @@ def from_recurrence(self, *args, **kwds):
1833
1833
r"""
1834
1834
Construct the unique `k`-regular sequence which fulfills the given
1835
1835
recurrence relations and initial values. The recurrence relations have to
1836
- have the specific shape of `k`-recursive sequences as described in [HKL2021 ]_,
1836
+ have the specific shape of `k`-recursive sequences as described in [HKL2022 ]_,
1837
1837
and are either given as symbolic equations, e.g.,
1838
1838
1839
1839
::
@@ -1882,7 +1882,7 @@ def from_recurrence(self, *args, **kwds):
1882
1882
``coefficient_ring``.
1883
1883
1884
1884
The recurrence relations above uniquely determine a `k`-regular sequence;
1885
- see [HKL2021 ]_ for further information.
1885
+ see [HKL2022 ]_ for further information.
1886
1886
1887
1887
- ``function`` -- symbolic function ``f`` occurring in the equations
1888
1888
@@ -1895,11 +1895,11 @@ def from_recurrence(self, *args, **kwds):
1895
1895
following arguments are required:
1896
1896
1897
1897
- ``M`` -- parameter of the recursive sequences,
1898
- see [HKL2021 ]_, Definition 3.1, as well as in the description of
1898
+ see [HKL2022 ]_, Definition 3.1, as well as in the description of
1899
1899
``equations`` above
1900
1900
1901
1901
- ``m`` -- parameter of the recursive sequences,
1902
- see [HKL2021 ]_, Definition 3.1, as well as in the description of
1902
+ see [HKL2022 ]_, Definition 3.1, as well as in the description of
1903
1903
``equations`` above
1904
1904
1905
1905
- ``coeffs`` -- a dictionary where ``coeffs[(r, j)]`` is the
@@ -1917,7 +1917,7 @@ def from_recurrence(self, *args, **kwds):
1917
1917
1918
1918
- ``inhomogeneities`` -- (default: ``{}``) a dictionary
1919
1919
mapping integers ``r`` to the inhomogeneity `g_r` as given
1920
- in [HKL2021 ]_, Corollary D. All inhomogeneities have to be
1920
+ in [HKL2022 ]_, Corollary D. All inhomogeneities have to be
1921
1921
regular sequences from ``self`` or elements of ``coefficient_ring``.
1922
1922
1923
1923
OUTPUT: a :class:`kRegularSequence`
@@ -2985,21 +2985,21 @@ def parameters(self, M, m, coeffs, initial_values, offset=0, inhomogeneities={})
2985
2985
OUTPUT: a namedtuple ``recurrence_rules`` consisting of
2986
2986
2987
2987
- ``M``, ``m``, ``l``, ``u``, ``offset`` -- parameters of the recursive
2988
- sequences, see [HKL2021 ]_, Definition 3.1
2988
+ sequences, see [HKL2022 ]_, Definition 3.1
2989
2989
2990
2990
- ``ll``, ``uu``, ``n1``, ``dim`` -- parameters and dimension of the
2991
- resulting linear representation, see [HKL2021 ]_, Theorem A
2991
+ resulting linear representation, see [HKL2022 ]_, Theorem A
2992
2992
2993
2993
- ``coeffs`` -- a dictionary mapping ``(r, j)`` to the coefficients
2994
- `c_{r, j}` as given in [HKL2021 ]_, Equation (3.1).
2994
+ `c_{r, j}` as given in [HKL2022 ]_, Equation (3.1).
2995
2995
If ``coeffs[(r, j)]`` is not given for some ``r`` and ``j``,
2996
2996
then it is assumed to be zero.
2997
2997
2998
2998
- ``initial_values`` -- a dictionary mapping integers ``n`` to the
2999
2999
``n``-th value of the sequence
3000
3000
3001
3001
- ``inhomogeneities`` -- a dictionary mapping integers ``r``
3002
- to the inhomogeneity `g_r` as given in [HKL2021 ]_, Corollary D.
3002
+ to the inhomogeneity `g_r` as given in [HKL2022 ]_, Corollary D.
3003
3003
3004
3004
EXAMPLES::
3005
3005
@@ -3177,10 +3177,10 @@ def values(self, *, M, m, l, u, ll, coeffs,
3177
3177
INPUT:
3178
3178
3179
3179
- ``M``, ``m``, ``l``, ``u``, ``offset`` -- parameters of the
3180
- recursive sequences, see [HKL2021 ]_, Definition 3.1
3180
+ recursive sequences, see [HKL2022 ]_, Definition 3.1
3181
3181
3182
3182
- ``ll`` -- parameter of the resulting linear representation,
3183
- see [HKL2021 ]_, Theorem A
3183
+ see [HKL2022 ]_, Theorem A
3184
3184
3185
3185
- ``coeffs`` -- a dictionary where ``coeffs[(r, j)]`` is the
3186
3186
coefficient `c_{r,j}` as given in :meth:`kRegularSequenceSpace.from_recurrence`.
@@ -3194,7 +3194,7 @@ def values(self, *, M, m, l, u, ll, coeffs,
3194
3194
determine the linear representation
3195
3195
3196
3196
- ``inhomogeneities`` -- a dictionary mapping integers ``r``
3197
- to the inhomogeneity `g_r` as given in [HKL2021 ]_, Corollary D.
3197
+ to the inhomogeneity `g_r` as given in [HKL2022 ]_, Corollary D.
3198
3198
3199
3199
OUTPUT:
3200
3200
@@ -3368,15 +3368,15 @@ def f(n):
3368
3368
def ind (self , M , m , ll , uu ):
3369
3369
r"""
3370
3370
Determine the index operator corresponding to the recursive
3371
- sequence as defined in [HKL2021 ]_.
3371
+ sequence as defined in [HKL2022 ]_.
3372
3372
3373
3373
INPUT:
3374
3374
3375
3375
- ``M``, ``m`` -- parameters of the recursive sequences,
3376
- see [HKL2021 ]_, Definition 3.1
3376
+ see [HKL2022 ]_, Definition 3.1
3377
3377
3378
3378
- ``ll``, ``uu`` -- parameters of the resulting linear representation,
3379
- see [HKL2021 ]_, Theorem A
3379
+ see [HKL2022 ]_, Theorem A
3380
3380
3381
3381
OUTPUT:
3382
3382
@@ -3432,7 +3432,7 @@ def ind(self, M, m, ll, uu):
3432
3432
def shifted_inhomogeneities (self , recurrence_rules ):
3433
3433
r"""
3434
3434
Return a dictionary of all needed shifted inhomogeneities as described
3435
- in the proof of Coroallary D in [HKL2021 ]_.
3435
+ in the proof of Corollary D in [HKL2022 ]_.
3436
3436
3437
3437
INPUT:
3438
3438
@@ -3442,9 +3442,9 @@ def shifted_inhomogeneities(self, recurrence_rules):
3442
3442
OUTPUT:
3443
3443
3444
3444
A dictionary mapping `r` to the regular sequence
3445
- `\sum_i g_r(n + i)` for `g_r` as given in [HKL2021 ]_, Corollary D,
3445
+ `\sum_i g_r(n + i)` for `g_r` as given in [HKL2022 ]_, Corollary D,
3446
3446
and `i` between `\lfloor\ell'/k^{M}\rfloor` and
3447
- `\lfloor (k^{M-1} - k^{m} + u')/k^{M}\rfloor + 1`; see [HKL2021 ]_,
3447
+ `\lfloor (k^{M-1} - k^{m} + u')/k^{M}\rfloor + 1`; see [HKL2022 ]_,
3448
3448
proof of Corollary D. The first blocks of the corresponding
3449
3449
vector-valued sequence (obtained from its linear
3450
3450
representation) correspond to the sequences `g_r(n + i)` where
@@ -3543,7 +3543,7 @@ def shifted_inhomogeneities(self, recurrence_rules):
3543
3543
3544
3544
def v_eval_n (self , recurrence_rules , n ):
3545
3545
r"""
3546
- Return the vector `v(n)` as given in [HKL2021 ]_, Theorem A.
3546
+ Return the vector `v(n)` as given in [HKL2022 ]_, Theorem A.
3547
3547
3548
3548
INPUT:
3549
3549
@@ -3612,7 +3612,7 @@ def matrix(self, recurrence_rules, rem, correct_offset=True):
3612
3612
3613
3613
- ``correct_offset`` -- (default: ``True``) a boolean. If
3614
3614
``True``, then the resulting linear representation has no
3615
- offset. See [HKL2021 ]_ for more information.
3615
+ offset. See [HKL2022 ]_ for more information.
3616
3616
3617
3617
OUTPUT: a matrix
3618
3618
0 commit comments