Skip to content

Commit 9867e78

Browse files
author
Release Manager
committed
gh-36398: two minor details in groups fixing the category of dual abelian groups fixing one of those pesting `#needs` annotation ### 📝 Checklist - [x] The title is concise, informative, and self-explanatory. - [x] The description explains in detail what this PR is about. URL: #36398 Reported by: Frédéric Chapoton Reviewer(s): Travis Scrimshaw
2 parents 2e48992 + 6bf4091 commit 9867e78

File tree

2 files changed

+5
-2
lines changed

2 files changed

+5
-2
lines changed

src/sage/groups/abelian_gps/dual_abelian_group.py

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -37,6 +37,8 @@
3737
3838
sage: # needs sage.rings.real_mpfr
3939
sage: Fd = F.dual_group(names='ABCDE', base_ring=CC)
40+
sage: Fd.category()
41+
Category of commutative groups
4042
sage: A,B,C,D,E = Fd.gens()
4143
sage: A(a) # abs tol 1e-8
4244
-1.00000000000000 + 0.00000000000000*I
@@ -64,7 +66,7 @@
6466
# Distributed under the terms of the GNU General Public License (GPL)
6567
# http://www.gnu.org/licenses/
6668
###########################################################################
67-
69+
from sage.categories.groups import Groups
6870
from sage.structure.category_object import normalize_names
6971
from sage.structure.unique_representation import UniqueRepresentation
7072
from sage.groups.abelian_gps.dual_abelian_group_element import (
@@ -129,7 +131,7 @@ def __init__(self, G, names, base_ring):
129131
self._group = G
130132
names = normalize_names(G.ngens(), names)
131133
self._assign_names(names)
132-
AbelianGroupBase.__init__(self) # TODO: category=CommutativeGroups()
134+
AbelianGroupBase.__init__(self, category=Groups().Commutative())
133135

134136
def group(self):
135137
"""

src/sage/groups/artin.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -142,6 +142,7 @@ def coxeter_group_element(self, W=None):
142142
From an element of the Coxeter group it is possible to recover
143143
the image by the standard section to the Artin group::
144144
145+
sage: # needs sage.rings.number_field
145146
sage: B(b1)
146147
s1*s2*s3*s2
147148
sage: A(c0)

0 commit comments

Comments
 (0)