Skip to content

Commit 98ddbf2

Browse files
author
Matthias Koeppe
committed
sage.rings.number_field: Update # needs
1 parent 0bbdb6c commit 98ddbf2

10 files changed

+275
-256
lines changed

src/sage/rings/number_field/galois_group.py

Lines changed: 15 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -45,19 +45,20 @@ class GaloisGroup_v1(SageObject):
4545
4646
EXAMPLES::
4747
48+
sage: # needs sage.symbolic
4849
sage: from sage.rings.number_field.galois_group import GaloisGroup_v1
49-
sage: K = QQ[2^(1/3)] # optional - sage.symbolic
50-
sage: pK = K.absolute_polynomial() # optional - sage.symbolic
51-
sage: G = GaloisGroup_v1(pK.galois_group(pari_group=True), K); G # optional - sage.symbolic
50+
sage: K = QQ[2^(1/3)]
51+
sage: pK = K.absolute_polynomial()
52+
sage: G = GaloisGroup_v1(pK.galois_group(pari_group=True), K); G
5253
...DeprecationWarning: GaloisGroup_v1 is deprecated; please use GaloisGroup_v2
5354
See https://github.com/sagemath/sage/issues/28782 for details.
5455
Galois group PARI group [6, -1, 2, "S3"] of degree 3 of the
5556
Number Field in a with defining polynomial x^3 - 2 with a = 1.259921049894873?
56-
sage: G.order() # optional - sage.symbolic
57+
sage: G.order()
5758
6
58-
sage: G.group() # optional - sage.symbolic
59+
sage: G.group()
5960
PARI group [6, -1, 2, "S3"] of degree 3
60-
sage: G.number_field() # optional - sage.symbolic
61+
sage: G.number_field()
6162
Number Field in a with defining polynomial x^3 - 2 with a = 1.259921049894873?
6263
"""
6364

@@ -97,11 +98,11 @@ def __eq__(self, other):
9798
sage: G = GaloisGroup_v1(K.absolute_polynomial().galois_group(pari_group=True), K)
9899
...DeprecationWarning: GaloisGroup_v1 is deprecated; please use GaloisGroup_v2
99100
See https://github.com/sagemath/sage/issues/28782 for details.
100-
sage: L = QQ[sqrt(2)] # optional - sage.symbolic
101-
sage: H = GaloisGroup_v1(L.absolute_polynomial().galois_group(pari_group=True), L) # optional - sage.symbolic
102-
sage: H == G # optional - sage.symbolic
101+
sage: L = QQ[sqrt(2)] # needs sage.symbolic
102+
sage: H = GaloisGroup_v1(L.absolute_polynomial().galois_group(pari_group=True), L) # needs sage.symbolic
103+
sage: H == G # needs sage.symbolic
103104
False
104-
sage: H == H # optional - sage.symbolic
105+
sage: H == H # needs sage.symbolic
105106
True
106107
sage: G == G
107108
True
@@ -126,11 +127,11 @@ def __ne__(self, other):
126127
sage: G = GaloisGroup_v1(K.absolute_polynomial().galois_group(pari_group=True), K)
127128
...DeprecationWarning: GaloisGroup_v1 is deprecated; please use GaloisGroup_v2
128129
See https://github.com/sagemath/sage/issues/28782 for details.
129-
sage: L = QQ[sqrt(2)] # optional - sage.symbolic
130-
sage: H = GaloisGroup_v1(L.absolute_polynomial().galois_group(pari_group=True), L) # optional - sage.symbolic
131-
sage: H != G # optional - sage.symbolic
130+
sage: L = QQ[sqrt(2)] # needs sage.symbolic
131+
sage: H = GaloisGroup_v1(L.absolute_polynomial().galois_group(pari_group=True), L) # needs sage.symbolic
132+
sage: H != G # needs sage.symbolic
132133
True
133-
sage: H != H # optional - sage.symbolic
134+
sage: H != H # needs sage.symbolic
134135
False
135136
sage: G != G
136137
False

src/sage/rings/number_field/homset.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -342,10 +342,10 @@ def _element_constructor_(self, x, base_map=None, base_hom=None, check=True):
342342
are only approximate::
343343
344344
sage: K.<a> = QuadraticField(-7)
345-
sage: f = K.hom([CC(sqrt(-7))], check=False) # optional - sage.symbolic
345+
sage: f = K.hom([CC(sqrt(-7))], check=False) # needs sage.symbolic
346346
sage: x = polygen(K)
347347
sage: L.<b> = K.extension(x^2 - a - 5)
348-
sage: L.Hom(CC)(f(a + 5).sqrt(), f, check=False) # optional - sage.symbolic
348+
sage: L.Hom(CC)(f(a + 5).sqrt(), f, check=False) # needs sage.symbolic
349349
Relative number field morphism:
350350
From: Number Field in b with defining polynomial x^2 - a - 5 over its base field
351351
To: Complex Field with 53 bits of precision

0 commit comments

Comments
 (0)