@@ -45,19 +45,20 @@ class GaloisGroup_v1(SageObject):
45
45
46
46
EXAMPLES::
47
47
48
+ sage: # needs sage.symbolic
48
49
sage: from sage.rings.number_field.galois_group import GaloisGroup_v1
49
- sage: K = QQ[2^(1/3)] # optional - sage.symbolic
50
- sage: pK = K.absolute_polynomial() # optional - sage.symbolic
51
- sage: G = GaloisGroup_v1(pK.galois_group(pari_group=True), K); G # optional - sage.symbolic
50
+ sage: K = QQ[2^(1/3)]
51
+ sage: pK = K.absolute_polynomial()
52
+ sage: G = GaloisGroup_v1(pK.galois_group(pari_group=True), K); G
52
53
...DeprecationWarning: GaloisGroup_v1 is deprecated; please use GaloisGroup_v2
53
54
See https://github.com/sagemath/sage/issues/28782 for details.
54
55
Galois group PARI group [6, -1, 2, "S3"] of degree 3 of the
55
56
Number Field in a with defining polynomial x^3 - 2 with a = 1.259921049894873?
56
- sage: G.order() # optional - sage.symbolic
57
+ sage: G.order()
57
58
6
58
- sage: G.group() # optional - sage.symbolic
59
+ sage: G.group()
59
60
PARI group [6, -1, 2, "S3"] of degree 3
60
- sage: G.number_field() # optional - sage.symbolic
61
+ sage: G.number_field()
61
62
Number Field in a with defining polynomial x^3 - 2 with a = 1.259921049894873?
62
63
"""
63
64
@@ -97,11 +98,11 @@ def __eq__(self, other):
97
98
sage: G = GaloisGroup_v1(K.absolute_polynomial().galois_group(pari_group=True), K)
98
99
...DeprecationWarning: GaloisGroup_v1 is deprecated; please use GaloisGroup_v2
99
100
See https://github.com/sagemath/sage/issues/28782 for details.
100
- sage: L = QQ[sqrt(2)] # optional - sage.symbolic
101
- sage: H = GaloisGroup_v1(L.absolute_polynomial().galois_group(pari_group=True), L) # optional - sage.symbolic
102
- sage: H == G # optional - sage.symbolic
101
+ sage: L = QQ[sqrt(2)] # needs sage.symbolic
102
+ sage: H = GaloisGroup_v1(L.absolute_polynomial().galois_group(pari_group=True), L) # needs sage.symbolic
103
+ sage: H == G # needs sage.symbolic
103
104
False
104
- sage: H == H # optional - sage.symbolic
105
+ sage: H == H # needs sage.symbolic
105
106
True
106
107
sage: G == G
107
108
True
@@ -126,11 +127,11 @@ def __ne__(self, other):
126
127
sage: G = GaloisGroup_v1(K.absolute_polynomial().galois_group(pari_group=True), K)
127
128
...DeprecationWarning: GaloisGroup_v1 is deprecated; please use GaloisGroup_v2
128
129
See https://github.com/sagemath/sage/issues/28782 for details.
129
- sage: L = QQ[sqrt(2)] # optional - sage.symbolic
130
- sage: H = GaloisGroup_v1(L.absolute_polynomial().galois_group(pari_group=True), L) # optional - sage.symbolic
131
- sage: H != G # optional - sage.symbolic
130
+ sage: L = QQ[sqrt(2)] # needs sage.symbolic
131
+ sage: H = GaloisGroup_v1(L.absolute_polynomial().galois_group(pari_group=True), L) # needs sage.symbolic
132
+ sage: H != G # needs sage.symbolic
132
133
True
133
- sage: H != H # optional - sage.symbolic
134
+ sage: H != H # needs sage.symbolic
134
135
False
135
136
sage: G != G
136
137
False
0 commit comments