@@ -1002,6 +1002,7 @@ def is_maximal(self):
1002
1002
1003
1003
EXAMPLES::
1004
1004
1005
+ sage: x = polygen(ZZ)
1005
1006
sage: K.<a> = NumberField(x^3 + 3); K
1006
1007
Number Field in a with defining polynomial x^3 + 3
1007
1008
sage: K.ideal(5).is_maximal()
@@ -1017,6 +1018,7 @@ def is_prime(self):
1017
1018
1018
1019
EXAMPLES::
1019
1020
1021
+ sage: x = polygen(ZZ)
1020
1022
sage: K.<a> = NumberField(x^2 - 17); K
1021
1023
Number Field in a with defining polynomial x^2 - 17
1022
1024
sage: K.ideal(5).is_prime() # inert prime
@@ -1031,7 +1033,7 @@ def is_prime(self):
1031
1033
Check that we do not factor the norm of the ideal, this used
1032
1034
to take half an hour, see :trac:`33360`::
1033
1035
1034
- sage: K.<a,b,c> = NumberField([x^2-2, x^2-3, x^2- 5])
1036
+ sage: K.<a,b,c> = NumberField([x^2 - 2, x^2 - 3, x^2 - 5])
1035
1037
sage: t = (((-2611940*c + 1925290/7653)*b - 1537130/7653*c
1036
1038
....: + 10130950)*a + (1343014/7653*c - 8349770)*b
1037
1039
....: + 6477058*c - 2801449990/4002519)
@@ -1112,6 +1114,7 @@ def _cache_bnfisprincipal(self, proof=None, gens=False):
1112
1114
1113
1115
Check that no warnings are triggered from PARI/GP (see :trac:`30801`)::
1114
1116
1117
+ sage: x = polygen(ZZ)
1115
1118
sage: K.<a> = NumberField(x^2 - x + 112941801)
1116
1119
sage: I = K.ideal((112941823, a + 49942513))
1117
1120
sage: I.is_principal()
@@ -1494,7 +1497,7 @@ def decomposition_group(self):
1494
1497
1495
1498
EXAMPLES::
1496
1499
1497
- sage: QuadraticField(-23, 'w').primes_above(7)[0].decomposition_group()
1500
+ sage: QuadraticField(-23, 'w').primes_above(7)[0].decomposition_group() # needs sage.groups
1498
1501
Subgroup generated by [(1,2)] of (Galois group 2T1 (S2) with order 2 of x^2 + 23)
1499
1502
"""
1500
1503
return self .number_field ().galois_group ().decomposition_group (self )
@@ -1510,9 +1513,9 @@ def ramification_group(self, v):
1510
1513
1511
1514
EXAMPLES::
1512
1515
1513
- sage: QuadraticField(-23, 'w').primes_above(23)[0].ramification_group(0)
1516
+ sage: QuadraticField(-23, 'w').primes_above(23)[0].ramification_group(0) # needs sage.groups
1514
1517
Subgroup generated by [(1,2)] of (Galois group 2T1 (S2) with order 2 of x^2 + 23)
1515
- sage: QuadraticField(-23, 'w').primes_above(23)[0].ramification_group(1)
1518
+ sage: QuadraticField(-23, 'w').primes_above(23)[0].ramification_group(1) # needs sage.groups
1516
1519
Subgroup generated by [()] of (Galois group 2T1 (S2) with order 2 of x^2 + 23)
1517
1520
"""
1518
1521
@@ -1528,7 +1531,7 @@ def inertia_group(self):
1528
1531
1529
1532
EXAMPLES::
1530
1533
1531
- sage: QuadraticField(-23, 'w').primes_above(23)[0].inertia_group()
1534
+ sage: QuadraticField(-23, 'w').primes_above(23)[0].inertia_group() # needs sage.groups
1532
1535
Subgroup generated by [(1,2)] of (Galois group 2T1 (S2) with order 2 of x^2 + 23)
1533
1536
"""
1534
1537
return self .ramification_group (0 )
@@ -1594,7 +1597,7 @@ def artin_symbol(self):
1594
1597
1595
1598
EXAMPLES::
1596
1599
1597
- sage: QuadraticField(-23, 'w').primes_above(7)[0].artin_symbol()
1600
+ sage: QuadraticField(-23, 'w').primes_above(7)[0].artin_symbol() # needs sage.groups
1598
1601
(1,2)
1599
1602
"""
1600
1603
return self .number_field ().galois_group ().artin_symbol (self )
0 commit comments