Skip to content

Commit 9966c86

Browse files
author
Matthias Koeppe
committed
sage.rings: Update # needs
1 parent 390ecf5 commit 9966c86

File tree

2 files changed

+10
-7
lines changed

2 files changed

+10
-7
lines changed

src/sage/rings/number_field/number_field_ideal.py

Lines changed: 9 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1002,6 +1002,7 @@ def is_maximal(self):
10021002
10031003
EXAMPLES::
10041004
1005+
sage: x = polygen(ZZ)
10051006
sage: K.<a> = NumberField(x^3 + 3); K
10061007
Number Field in a with defining polynomial x^3 + 3
10071008
sage: K.ideal(5).is_maximal()
@@ -1017,6 +1018,7 @@ def is_prime(self):
10171018
10181019
EXAMPLES::
10191020
1021+
sage: x = polygen(ZZ)
10201022
sage: K.<a> = NumberField(x^2 - 17); K
10211023
Number Field in a with defining polynomial x^2 - 17
10221024
sage: K.ideal(5).is_prime() # inert prime
@@ -1031,7 +1033,7 @@ def is_prime(self):
10311033
Check that we do not factor the norm of the ideal, this used
10321034
to take half an hour, see :trac:`33360`::
10331035
1034-
sage: K.<a,b,c> = NumberField([x^2-2,x^2-3,x^2-5])
1036+
sage: K.<a,b,c> = NumberField([x^2 - 2, x^2 - 3, x^2 - 5])
10351037
sage: t = (((-2611940*c + 1925290/7653)*b - 1537130/7653*c
10361038
....: + 10130950)*a + (1343014/7653*c - 8349770)*b
10371039
....: + 6477058*c - 2801449990/4002519)
@@ -1112,6 +1114,7 @@ def _cache_bnfisprincipal(self, proof=None, gens=False):
11121114
11131115
Check that no warnings are triggered from PARI/GP (see :trac:`30801`)::
11141116
1117+
sage: x = polygen(ZZ)
11151118
sage: K.<a> = NumberField(x^2 - x + 112941801)
11161119
sage: I = K.ideal((112941823, a + 49942513))
11171120
sage: I.is_principal()
@@ -1494,7 +1497,7 @@ def decomposition_group(self):
14941497
14951498
EXAMPLES::
14961499
1497-
sage: QuadraticField(-23, 'w').primes_above(7)[0].decomposition_group()
1500+
sage: QuadraticField(-23, 'w').primes_above(7)[0].decomposition_group() # needs sage.groups
14981501
Subgroup generated by [(1,2)] of (Galois group 2T1 (S2) with order 2 of x^2 + 23)
14991502
"""
15001503
return self.number_field().galois_group().decomposition_group(self)
@@ -1510,9 +1513,9 @@ def ramification_group(self, v):
15101513
15111514
EXAMPLES::
15121515
1513-
sage: QuadraticField(-23, 'w').primes_above(23)[0].ramification_group(0)
1516+
sage: QuadraticField(-23, 'w').primes_above(23)[0].ramification_group(0) # needs sage.groups
15141517
Subgroup generated by [(1,2)] of (Galois group 2T1 (S2) with order 2 of x^2 + 23)
1515-
sage: QuadraticField(-23, 'w').primes_above(23)[0].ramification_group(1)
1518+
sage: QuadraticField(-23, 'w').primes_above(23)[0].ramification_group(1) # needs sage.groups
15161519
Subgroup generated by [()] of (Galois group 2T1 (S2) with order 2 of x^2 + 23)
15171520
"""
15181521

@@ -1528,7 +1531,7 @@ def inertia_group(self):
15281531
15291532
EXAMPLES::
15301533
1531-
sage: QuadraticField(-23, 'w').primes_above(23)[0].inertia_group()
1534+
sage: QuadraticField(-23, 'w').primes_above(23)[0].inertia_group() # needs sage.groups
15321535
Subgroup generated by [(1,2)] of (Galois group 2T1 (S2) with order 2 of x^2 + 23)
15331536
"""
15341537
return self.ramification_group(0)
@@ -1594,7 +1597,7 @@ def artin_symbol(self):
15941597
15951598
EXAMPLES::
15961599
1597-
sage: QuadraticField(-23, 'w').primes_above(7)[0].artin_symbol()
1600+
sage: QuadraticField(-23, 'w').primes_above(7)[0].artin_symbol() # needs sage.groups
15981601
(1,2)
15991602
"""
16001603
return self.number_field().galois_group().artin_symbol(self)

src/sage/rings/number_field/totallyreal_rel.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -51,7 +51,7 @@
5151
sage: [ f[0] for f in ls ]
5252
[725, 1125, 1600, 2000, 2225, 2525, 3600, 4225, 4400, 4525, 5125, 5225, 5725, 6125, 7225, 7600, 7625, 8000, 8525, 8725, 9225]
5353
54-
sage: [NumberField(ZZx(x[1]), 't').is_galois() for x in ls]
54+
sage: [NumberField(ZZx(x[1]), 't').is_galois() for x in ls] # needs sage.groups
5555
[False, True, True, True, False, False, True, True, False, False, False, False, False, True, True, False, False, True, False, False, False]
5656
5757
Eight out of 21 such fields are Galois (with Galois group `C_4`

0 commit comments

Comments
 (0)