@@ -233,7 +233,7 @@ cdef class Riemann_Map:
233
233
self .tk = np.array(np.arange(N) * TWOPI / N + 0.001 / N,
234
234
dtype = FLOAT)
235
235
self .tk2 = np.zeros(N + 1 , dtype = FLOAT)
236
- for i in xrange (N):
236
+ for i in range (N):
237
237
self .tk2[i] = self .tk[i]
238
238
self .tk2[N] = TWOPI
239
239
self .B = len (fs) # number of boundaries of the figure
@@ -246,14 +246,14 @@ cdef class Riemann_Map:
246
246
dtype = COMPLEX)
247
247
# Find the points on the boundaries and their derivatives.
248
248
if self .exterior:
249
- for k in xrange (self .B):
250
- for i in xrange (N):
249
+ for k in range (self .B):
250
+ for i in range (N):
251
251
fk = fs[k](self .tk[N- i- 1 ])
252
252
cps[k, i] = complex (1 / fk)
253
253
dps[k, i] = complex (1 / fk** 2 * fprimes[k](self .tk[N- i- 1 ]))
254
254
else :
255
- for k in xrange (self .B):
256
- for i in xrange (N):
255
+ for k in range (self .B):
256
+ for i in range (N):
257
257
cps[k, i] = complex (fs[k](self .tk[i]))
258
258
dps[k, i] = complex (fprimes[k](self .tk[i]))
259
259
if self .exterior:
@@ -327,7 +327,7 @@ cdef class Riemann_Map:
327
327
(normalized_dp[t]/ (cp- cp[t])).conjugate())
328
328
for t in np.arange(NB)], dtype = np.complex128)
329
329
np.seterr(divide = errdivide,invalid = errinvalid) # resets the error handling
330
- for i in xrange (NB):
330
+ for i in range (NB):
331
331
K[i, i] = 1
332
332
# Nystrom Method for solving 2nd kind integrals
333
333
phi = np.linalg.solve(K, g) / NB * TWOPI
@@ -339,22 +339,22 @@ cdef class Riemann_Map:
339
339
# regions.
340
340
if B != 1 :
341
341
theta_array = np.zeros([1 , NB])
342
- for i in xrange (NB):
342
+ for i in range (NB):
343
343
theta_array[0 , i] = phase(- I * np.power(phi[i], 2 ) * dp[i])
344
344
self .theta_array = np.concatenate(
345
345
[theta_array.reshape([B, N]), np.zeros([B, 1 ])], axis = 1 )
346
- for k in xrange (B):
346
+ for k in range (B):
347
347
self .theta_array[k, N] = self .theta_array[k, 0 ] + TWOPI
348
348
# Finding the theta correspondence using abs. Well behaved, but
349
349
# doesn't work on multiply connected domains.
350
350
else :
351
351
phi2 = phi.reshape([self .B, N])
352
352
theta_array = np.zeros([B, N + 1 ], dtype = np.float64)
353
- for k in xrange (B):
353
+ for k in range (B):
354
354
phik = phi2[k]
355
355
saa = (np.dot(abs (phi), abs (phi))) * TWOPI / NB
356
356
theta_array[k, 0 ] = 0
357
- for i in xrange (1 , N):
357
+ for i in range (1 , N):
358
358
theta_array[k, i] = (
359
359
theta_array[k, i - 1 ] +
360
360
((TWOPI / NB * TWOPI *
@@ -368,7 +368,7 @@ cdef class Riemann_Map:
368
368
t0 = theta_array[k, tmax] + phase(phimax)
369
369
else :
370
370
t0 = theta_array[k, tmax] - phase(phimax)
371
- for i in xrange (N):
371
+ for i in range (N):
372
372
theta_array[k, i] = theta_array[k, i] - t0
373
373
theta_array[k, N] = TWOPI + theta_array[k, 0 ]
374
374
self .theta_array = theta_array
@@ -432,7 +432,7 @@ cdef class Riemann_Map:
432
432
cdef int k, B
433
433
if boundary < 0 :
434
434
temptk = self .tk
435
- for i in xrange (self .B - 1 ):
435
+ for i in range (self .B - 1 ):
436
436
temptk = np.concatenate([temptk, self .tk])
437
437
if absolute_value:
438
438
return np.column_stack(
@@ -504,7 +504,7 @@ cdef class Riemann_Map:
504
504
"""
505
505
if boundary < 0 :
506
506
temptk = self .tk2
507
- for i in xrange (self .B - 1 ):
507
+ for i in range (self .B - 1 ):
508
508
temptk = np.concatenate([temptk, self .tk2])
509
509
return np.column_stack(
510
510
[temptk, self .theta_array.flatten()]).tolist()
@@ -532,8 +532,8 @@ cdef class Riemann_Map:
532
532
[self .B, N + 1 ], dtype = np.complex128)
533
533
cdef int k, i
534
534
# Lots of setup for Simpson's method of integration.
535
- for k in xrange (self .B):
536
- for i in xrange (N // 3 ):
535
+ for k in range (self .B):
536
+ for i in range (N // 3 ):
537
537
p_vector[k, 3 * i] = (2 * coeff * dps[k, 3 * i] *
538
538
exp(I * theta_array[k, 3 * i]))
539
539
p_vector[k, 3 * i + 1 ] = (3 * coeff * dps[k, 3 * i + 1 ] *
@@ -636,21 +636,21 @@ cdef class Riemann_Map:
636
636
self .p_vector_inverse = np.zeros([B, N], dtype = np.complex128)
637
637
# Setup for trapezoid integration because integration points are
638
638
# not equally spaced.
639
- for k in xrange (B):
640
- for i in xrange (N):
639
+ for k in range (B):
640
+ for i in range (N):
641
641
di = theta_array[k, (i + 1 ) % N] - theta_array[k, (i - 1 ) % N]
642
642
if di > PI:
643
643
di = di - TWOPI
644
644
elif di < - PI:
645
645
di = di + TWOPI
646
646
self .p_vector_inverse[k, i] = di / 2
647
647
self .sinalpha = np.zeros([B, N], dtype = np.float64)
648
- for k in xrange (B):
649
- for i in xrange (N):
648
+ for k in range (B):
649
+ for i in range (N):
650
650
self .sinalpha[k, i] = sin(- theta_array[k, i])
651
651
self .cosalpha = np.zeros([B, N], dtype = np.float64)
652
- for k in xrange (B):
653
- for i in xrange (N):
652
+ for k in range (B):
653
+ for i in range (N):
654
654
self .cosalpha[k, i] = cos(- theta_array[k, i])
655
655
656
656
cpdef inverse_riemann_map(self , COMPLEX_T pt):
@@ -748,7 +748,7 @@ cdef class Riemann_Map:
748
748
from sage.plot.all import list_plot
749
749
750
750
plots = list (range (self .B))
751
- for k in xrange (self .B):
751
+ for k in range (self .B):
752
752
# This conditional should be eliminated when the thickness/pointsize
753
753
# issue is resolved later. Same for the others in plot_spiderweb().
754
754
if plotjoined:
@@ -814,13 +814,13 @@ cdef class Riemann_Map:
814
814
cdef np.ndarray[COMPLEX_T, ndim= 2 ] z_values = np.empty(
815
815
[y_points, x_points], dtype = np.complex128)
816
816
if self .exterior:
817
- for i in xrange (x_points):
818
- for j in xrange (y_points):
817
+ for i in range (x_points):
818
+ for j in range (y_points):
819
819
pt = 1 / (xmin + 0.5 * xstep + i* xstep + I* (ymin + 0.5 * ystep + j* ystep))
820
820
z_values[j, i] = 1 / (- np.dot(p_vector,1 / (pre_q_vector - pt)))
821
821
else :
822
- for i in xrange (x_points):
823
- for j in xrange (y_points):
822
+ for i in range (x_points):
823
+ for j in range (y_points):
824
824
pt = xmin + 0.5 * xstep + i* xstep + I* (ymin + 0.5 * ystep + j* ystep)
825
825
z_values[j, i] = - np.dot(p_vector,1 / (pre_q_vector - pt))
826
826
return z_values, xmin, xmax, ymin, ymax
@@ -949,9 +949,9 @@ cdef class Riemann_Map:
949
949
s = spline(np.column_stack([self .theta_array[0 ], self .tk2]).tolist())
950
950
tmax = self .theta_array[0 , self .N]
951
951
tmin = self .theta_array[0 , 0 ]
952
- for k in xrange (circles):
952
+ for k in range (circles):
953
953
temp = list (range (pts* 2 ))
954
- for i in xrange (2 * pts):
954
+ for i in range (2 * pts):
955
955
temp[i] = self .inverse_riemann_map(
956
956
(k + 1 ) / (circles + 1.0 ) * exp(I* i * TWOPI / (2 * pts)))
957
957
if plotjoined:
@@ -961,14 +961,14 @@ cdef class Riemann_Map:
961
961
circle_list[k] = list_plot(comp_pt(temp, 1 ),
962
962
rgbcolor = rgbcolor, pointsize = thickness)
963
963
line_list = list (range (spokes))
964
- for k in xrange (spokes):
964
+ for k in range (spokes):
965
965
temp = list (range (pts))
966
966
angle = (k* 1.0 ) / spokes * TWOPI
967
967
if angle >= tmax:
968
968
angle -= TWOPI
969
969
elif angle <= tmin:
970
970
angle += TWOPI
971
- for i in xrange (pts - 1 ):
971
+ for i in range (pts - 1 ):
972
972
temp[i] = self .inverse_riemann_map(
973
973
(i * 1.0 ) / (pts * 1.0 ) * exp(I * angle) * linescale)
974
974
temp[pts - 1 ] = complex (
@@ -1238,8 +1238,8 @@ cpdef complex_to_spiderweb(np.ndarray[COMPLEX_T, ndim = 2] z_values,
1238
1238
spoke_angles = srange(- PI,PI+ TWOPI/ spokes,TWOPI/ spokes)
1239
1239
else :
1240
1240
spoke_angles = []
1241
- for i in xrange (imax- 2 ): # the d arrays are 1 smaller on each side
1242
- for j in xrange (jmax- 2 ):
1241
+ for i in range (imax- 2 ): # the d arrays are 1 smaller on each side
1242
+ for j in range (jmax- 2 ):
1243
1243
z = z_values[i+ 1 ,j+ 1 ]
1244
1244
mag = abs (z)
1245
1245
arg = phase(z)
@@ -1309,9 +1309,9 @@ cpdef complex_to_rgb(np.ndarray[COMPLEX_T, ndim = 2] z_values):
1309
1309
dtype = FLOAT, shape = (imax, jmax, 3 ))
1310
1310
1311
1311
sig_on()
1312
- for i in xrange (imax):
1312
+ for i in range (imax):
1313
1313
row = z_values[i]
1314
- for j in xrange (jmax):
1314
+ for j in range (jmax):
1315
1315
z = row[j]
1316
1316
mag = abs (z)
1317
1317
arg = phase(z)
0 commit comments