@@ -86,7 +86,6 @@ cdef class KhuriMakdisi_base(object):
86
86
87
87
TESTS::
88
88
89
- sage: # long time
90
89
sage: k = GF(7)
91
90
sage: A.<x,y> = AffineSpace(k,2)
92
91
sage: C = Curve(y^2 + x^3 + 2*x + 1).projective_closure()
@@ -181,7 +180,6 @@ cdef class KhuriMakdisi_base(object):
181
180
182
181
TESTS::
183
182
184
- sage: # long time
185
183
sage: P2.<x,y,z> = ProjectiveSpace(GF(17), 2)
186
184
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
187
185
sage: h = C.function(y/x).divisor_of_poles()
@@ -207,7 +205,6 @@ cdef class KhuriMakdisi_base(object):
207
205
208
206
TESTS::
209
207
210
- sage: # long time
211
208
sage: P2.<x,y,z> = ProjectiveSpace(GF(17), 2)
212
209
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
213
210
sage: h = C.function(y/x).divisor_of_poles()
@@ -233,7 +230,6 @@ cdef class KhuriMakdisi_base(object):
233
230
234
231
TESTS::
235
232
236
- sage: # long time
237
233
sage: P2.<x,y,z> = ProjectiveSpace(GF(17), 2)
238
234
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
239
235
sage: h = C.function(y/x).divisor_of_poles()
@@ -259,7 +255,6 @@ cdef class KhuriMakdisi_base(object):
259
255
260
256
TESTS::
261
257
262
- sage: # long time
263
258
sage: P2.<x,y,z> = ProjectiveSpace(GF(17), 2)
264
259
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
265
260
sage: h = C.function(y/x).divisor_of_poles()
@@ -329,7 +324,6 @@ cdef class KhuriMakdisi_base(object):
329
324
330
325
TESTS::
331
326
332
- sage: # long time
333
327
sage: P2.<x,y,z> = ProjectiveSpace(GF(17), 2)
334
328
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
335
329
sage: h = C.function(y/x).divisor_of_poles()
@@ -363,7 +357,6 @@ cdef class KhuriMakdisi_large(KhuriMakdisi_base):
363
357
364
358
TESTS::
365
359
366
- sage: # long time
367
360
sage: P2.<x,y,z> = ProjectiveSpace(GF(17), 2)
368
361
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
369
362
sage: h = C.function(y/x).divisor_of_poles()
@@ -421,7 +414,6 @@ cdef class KhuriMakdisi_large(KhuriMakdisi_base):
421
414
422
415
TESTS::
423
416
424
- sage: # long time
425
417
sage: P2.<x,y,z> = ProjectiveSpace(GF(7), 2)
426
418
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
427
419
sage: J = C.jacobian(model='km_large')
@@ -484,7 +476,6 @@ cdef class KhuriMakdisi_large(KhuriMakdisi_base):
484
476
485
477
TESTS::
486
478
487
- sage: # long time
488
479
sage: P2.<x,y,z> = ProjectiveSpace(GF(17), 2)
489
480
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
490
481
sage: F = C.function_field()
@@ -516,7 +507,6 @@ cdef class KhuriMakdisi_large(KhuriMakdisi_base):
516
507
517
508
TESTS::
518
509
519
- sage: # long time
520
510
sage: k = GF(7)
521
511
sage: A.<x,y> = AffineSpace(k,2)
522
512
sage: C = Curve(y^2 + x^3 + 2*x + 1).projective_closure()
@@ -547,7 +537,6 @@ cdef class KhuriMakdisi_medium(KhuriMakdisi_base):
547
537
548
538
TESTS::
549
539
550
- sage: # long time
551
540
sage: P2.<x,y,z> = ProjectiveSpace(GF(17), 2)
552
541
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
553
542
sage: h = C.function(y/x).divisor_of_poles()
@@ -599,7 +588,6 @@ cdef class KhuriMakdisi_medium(KhuriMakdisi_base):
599
588
600
589
TESTS::
601
590
602
- sage: # long time
603
591
sage: P2.<x,y,z> = ProjectiveSpace(GF(17), 2)
604
592
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
605
593
sage: h = C.function(y/x).divisor_of_poles()
@@ -635,7 +623,6 @@ cdef class KhuriMakdisi_medium(KhuriMakdisi_base):
635
623
636
624
TESTS::
637
625
638
- sage: # long time
639
626
sage: P2.<x,y,z> = ProjectiveSpace(GF(17), 2)
640
627
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
641
628
sage: h = C.function(y/x).divisor_of_poles()
@@ -655,7 +642,6 @@ cdef class KhuriMakdisi_medium(KhuriMakdisi_base):
655
642
656
643
We check the computation in other model::
657
644
658
- sage: # long time
659
645
sage: J = C.jacobian(model='km_large', base_div=h)
660
646
sage: G = J.group()
661
647
sage: p1 = G.point(pl1 - b)
@@ -685,7 +671,6 @@ cdef class KhuriMakdisi_medium(KhuriMakdisi_base):
685
671
686
672
TESTS::
687
673
688
- sage: # long time
689
674
sage: k = GF(7)
690
675
sage: A.<x,y> = AffineSpace(k,2)
691
676
sage: C = Curve(y^2 + x^3 + 2*x + 1).projective_closure()
@@ -717,7 +702,6 @@ cdef class KhuriMakdisi_small(KhuriMakdisi_base):
717
702
718
703
TESTS::
719
704
720
- sage: # long time
721
705
sage: P2.<x,y,z> = ProjectiveSpace(GF(17), 2)
722
706
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
723
707
sage: b = C([0,1,0]).place()
@@ -775,7 +759,6 @@ cdef class KhuriMakdisi_small(KhuriMakdisi_base):
775
759
776
760
TESTS::
777
761
778
- sage: # long time
779
762
sage: P2.<x,y,z> = ProjectiveSpace(GF(17), 2)
780
763
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
781
764
sage: b = C([0,1,0]).place()
@@ -810,7 +793,6 @@ cdef class KhuriMakdisi_small(KhuriMakdisi_base):
810
793
811
794
TESTS::
812
795
813
- sage: # long time
814
796
sage: P2.<x,y,z> = ProjectiveSpace(GF(17), 2)
815
797
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
816
798
sage: b = C([0,1,0]).place()
@@ -830,7 +812,6 @@ cdef class KhuriMakdisi_small(KhuriMakdisi_base):
830
812
831
813
We check the computation in other model::
832
814
833
- sage: # long time
834
815
sage: h = C.function(y/x).divisor_of_poles()
835
816
sage: Jl = C.jacobian(model='km_large', base_div=h)
836
817
sage: G = J.group()
@@ -859,7 +840,6 @@ cdef class KhuriMakdisi_small(KhuriMakdisi_base):
859
840
860
841
TESTS::
861
842
862
- sage: # long time
863
843
sage: P2.<x,y,z> = ProjectiveSpace(GF(7), 2)
864
844
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
865
845
sage: b = C([0,1,0]).place()
@@ -874,7 +854,6 @@ cdef class KhuriMakdisi_small(KhuriMakdisi_base):
874
854
875
855
Check that :issue:`39148` is fixed::
876
856
877
- sage: # long time
878
857
sage: k.<x> = FunctionField(GF(17)); t = polygen(k)
879
858
sage: F.<y> = k.extension(t^4 + (14*x + 14)*t^3 + 9*t^2 + (10*x^2 + 15*x + 8)*t
880
859
....: + 7*x^3 + 15*x^2 + 6*x + 16)
@@ -912,7 +891,6 @@ cdef class KhuriMakdisi_small(KhuriMakdisi_base):
912
891
913
892
TESTS::
914
893
915
- sage: # long time
916
894
sage: k = GF(7)
917
895
sage: A.<x,y> = AffineSpace(k,2)
918
896
sage: C = Curve(y^2 + x^3 + 2*x + 1).projective_closure()
0 commit comments