@@ -539,34 +539,6 @@ cdef class CommutativeRing(Ring):
539
539
self .__fraction_field = K
540
540
return self .__fraction_field
541
541
542
- def _pseudo_fraction_field (self ):
543
- r """
544
- This method is used by the coercion model to determine if `a / b`
545
- should be treated as `a * ( 1/b) `, for example when dividing an element
546
- of `\Z Z[x ]` by an element of `\Z Z`.
547
-
548
- The default is to return the same value as ``self. fraction_field( ) ``,
549
- but it may return some other domain in which division is usually
550
- defined ( for example, ``\Z Z/n\Z Z`` for possibly composite `n`) .
551
-
552
- EXAMPLES::
553
-
554
- sage: ZZ. _pseudo_fraction_field( )
555
- Rational Field
556
- sage: ZZ['x' ]. _pseudo_fraction_field( )
557
- Fraction Field of Univariate Polynomial Ring in x over Integer Ring
558
- sage: Integers( 15) . _pseudo_fraction_field( )
559
- Ring of integers modulo 15
560
- sage: Integers( 15) . fraction_field( )
561
- Traceback ( most recent call last) :
562
- ...
563
- TypeError: self must be an integral domain.
564
- """
565
- try :
566
- return self .fraction_field()
567
- except (NotImplementedError ,TypeError ):
568
- return coercion_model.division_parent(self )
569
-
570
542
def extension (self , poly , name = None , names = None , **kwds ):
571
543
"""
572
544
Algebraically extend ``self`` by taking the quotient
0 commit comments