@@ -539,34 +539,6 @@ cdef class CommutativeRing(Ring):
539539 self .__fraction_field = K
540540 return self .__fraction_field
541541
542- def _pseudo_fraction_field (self ):
543- r """
544- This method is used by the coercion model to determine if `a / b`
545- should be treated as `a * ( 1/b) `, for example when dividing an element
546- of `\Z Z[x ]` by an element of `\Z Z`.
547-
548- The default is to return the same value as ``self. fraction_field( ) ``,
549- but it may return some other domain in which division is usually
550- defined ( for example, ``\Z Z/n\Z Z`` for possibly composite `n`) .
551-
552- EXAMPLES::
553-
554- sage: ZZ. _pseudo_fraction_field( )
555- Rational Field
556- sage: ZZ['x' ]. _pseudo_fraction_field( )
557- Fraction Field of Univariate Polynomial Ring in x over Integer Ring
558- sage: Integers( 15) . _pseudo_fraction_field( )
559- Ring of integers modulo 15
560- sage: Integers( 15) . fraction_field( )
561- Traceback ( most recent call last) :
562- ...
563- TypeError: self must be an integral domain.
564- """
565- try :
566- return self .fraction_field()
567- except (NotImplementedError ,TypeError ):
568- return coercion_model.division_parent(self )
569-
570542 def extension (self , poly , name = None , names = None , **kwds ):
571543 """
572544 Algebraically extend ``self`` by taking the quotient
0 commit comments