@@ -53,6 +53,22 @@ class IntegerValuedPolynomialRing(UniqueRepresentation, Parent):
53
53
sage: B = IntegerValuedPolynomialRing(QQ).B()
54
54
sage: S = IntegerValuedPolynomialRing(QQ).S()
55
55
56
+ There is a conversion formula between the two bases:
57
+
58
+ .. MATH::
59
+
60
+ \binom{x}{i} = \sum_{k=0}^{i} (-1)^{i-k} \binom{i}{k} \binom{x+k}{k}.
61
+
62
+ with inverse:
63
+
64
+ .. MATH::
65
+
66
+ \binom{x+i}{i} = \sum_{k=0}^{i} \binom{i}{k} \binom{x}{k}.
67
+
68
+ REFERENCES:
69
+
70
+ - :wikipedia:`Integer-valued polynomial`
71
+
56
72
TESTS::
57
73
58
74
sage: IntegerValuedPolynomialRing(24)
@@ -276,17 +292,6 @@ class Shifted(CombinatorialFreeModule, BindableClass):
276
292
277
293
\sum_{k=0}^{n_1} (-1)^k \binom{n_1}{k}\binom{n_1+n_2-k}{n_1} S[n_1 + n_2 - k].
278
294
279
- There is a conversion formula between the two bases:
280
-
281
- .. MATH::
282
-
283
- \binom{x}{i} = \sum_{k=0}^{i} (-1)^{i-k} \binom{i}{k} \binom{x+k}{k}.
284
-
285
-
286
- REFERENCES:
287
-
288
- - :wikipedia:`Integer-valued polynomial`
289
-
290
295
EXAMPLES::
291
296
292
297
sage: F = IntegerValuedPolynomialRing(QQ).S(); F
@@ -784,12 +789,6 @@ class Binomial(CombinatorialFreeModule, BindableClass):
784
789
785
790
The basis used here is given by `B[i] = \binom{n}{i}` for `i \in \NN`.
786
791
787
- There is a conversion formula between the two bases:
788
-
789
- .. MATH::
790
-
791
- \binom{x+i}{i} = \sum_{k=0}^{i} \binom{i}{k} \binom{x}{k}.
792
-
793
792
Assuming `n_1 \leq n_2`, the product of two monomials `B[n_1] \cdot B[n_2]`
794
793
is given by the sum
795
794
@@ -800,14 +799,6 @@ class Binomial(CombinatorialFreeModule, BindableClass):
800
799
The product of two monomials is therefore a positive linear combination
801
800
of monomials.
802
801
803
- REFERENCES:
804
-
805
- - :wikipedia:`Integer-valued polynomial`
806
-
807
- INPUT:
808
-
809
- - ``R`` -- ring
810
-
811
802
EXAMPLES::
812
803
813
804
sage: F = IntegerValuedPolynomialRing(QQ).B(); F
0 commit comments