Skip to content

Commit a09d769

Browse files
committed
moving some documentation to the top
1 parent 001fdfd commit a09d769

File tree

1 file changed

+16
-25
lines changed

1 file changed

+16
-25
lines changed

src/sage/rings/polynomial/integer_valued_polynomials.py

Lines changed: 16 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -53,6 +53,22 @@ class IntegerValuedPolynomialRing(UniqueRepresentation, Parent):
5353
sage: B = IntegerValuedPolynomialRing(QQ).B()
5454
sage: S = IntegerValuedPolynomialRing(QQ).S()
5555
56+
There is a conversion formula between the two bases:
57+
58+
.. MATH::
59+
60+
\binom{x}{i} = \sum_{k=0}^{i} (-1)^{i-k} \binom{i}{k} \binom{x+k}{k}.
61+
62+
with inverse:
63+
64+
.. MATH::
65+
66+
\binom{x+i}{i} = \sum_{k=0}^{i} \binom{i}{k} \binom{x}{k}.
67+
68+
REFERENCES:
69+
70+
- :wikipedia:`Integer-valued polynomial`
71+
5672
TESTS::
5773
5874
sage: IntegerValuedPolynomialRing(24)
@@ -276,17 +292,6 @@ class Shifted(CombinatorialFreeModule, BindableClass):
276292
277293
\sum_{k=0}^{n_1} (-1)^k \binom{n_1}{k}\binom{n_1+n_2-k}{n_1} S[n_1 + n_2 - k].
278294
279-
There is a conversion formula between the two bases:
280-
281-
.. MATH::
282-
283-
\binom{x}{i} = \sum_{k=0}^{i} (-1)^{i-k} \binom{i}{k} \binom{x+k}{k}.
284-
285-
286-
REFERENCES:
287-
288-
- :wikipedia:`Integer-valued polynomial`
289-
290295
EXAMPLES::
291296
292297
sage: F = IntegerValuedPolynomialRing(QQ).S(); F
@@ -784,12 +789,6 @@ class Binomial(CombinatorialFreeModule, BindableClass):
784789
785790
The basis used here is given by `B[i] = \binom{n}{i}` for `i \in \NN`.
786791
787-
There is a conversion formula between the two bases:
788-
789-
.. MATH::
790-
791-
\binom{x+i}{i} = \sum_{k=0}^{i} \binom{i}{k} \binom{x}{k}.
792-
793792
Assuming `n_1 \leq n_2`, the product of two monomials `B[n_1] \cdot B[n_2]`
794793
is given by the sum
795794
@@ -800,14 +799,6 @@ class Binomial(CombinatorialFreeModule, BindableClass):
800799
The product of two monomials is therefore a positive linear combination
801800
of monomials.
802801
803-
REFERENCES:
804-
805-
- :wikipedia:`Integer-valued polynomial`
806-
807-
INPUT:
808-
809-
- ``R`` -- ring
810-
811802
EXAMPLES::
812803
813804
sage: F = IntegerValuedPolynomialRing(QQ).B(); F

0 commit comments

Comments
 (0)