@@ -126,7 +126,7 @@ def init_coeffs(self, v, cutoff=None, w=1, *args, **kwds):
126
126
EXAMPLES::
127
127
128
128
sage: from sage.lfunctions.pari import lfun_generic, LFunction
129
- sage: lf = lfun_generic(conductor=1, gammaV=[0,1], weight=12, eps=1)
129
+ sage: lf = lfun_generic(conductor=1, gammaV=[0, 1], weight=12, eps=1)
130
130
sage: pari_coeffs = pari('k->vector(k,n,(5*sigma(n,3)+7*sigma(n,5))*n/12 - 35*sum(k=1,n-1,(6*k-4*(n-k))*sigma(k,3)*sigma(n-k,5)))')
131
131
sage: lf.init_coeffs(pari_coeffs)
132
132
@@ -144,7 +144,7 @@ def init_coeffs(self, v, cutoff=None, w=1, *args, **kwds):
144
144
Illustrate that one can give a list of complex numbers for v
145
145
(see :trac:`10937`)::
146
146
147
- sage: l2 = lfun_generic(conductor=1, gammaV=[0,1], weight=12, eps=1)
147
+ sage: l2 = lfun_generic(conductor=1, gammaV=[0, 1], weight=12, eps=1)
148
148
sage: l2.init_coeffs(list(delta_qexp(1000))[1:])
149
149
sage: L2 = LFunction(l2)
150
150
sage: L2(14)
@@ -155,7 +155,7 @@ def init_coeffs(self, v, cutoff=None, w=1, *args, **kwds):
155
155
Verify that setting the `w` parameter does not raise an error
156
156
(see :trac:`10937`)::
157
157
158
- sage: L2 = lfun_generic(conductor=1, gammaV=[0,1], weight=12, eps=1)
158
+ sage: L2 = lfun_generic(conductor=1, gammaV=[0, 1], weight=12, eps=1)
159
159
sage: L2.init_coeffs(list(delta_qexp(1000))[1:], w=[1..1000])
160
160
161
161
Additional arguments are ignored for compatibility with the old
@@ -250,12 +250,12 @@ def lfun_character(chi):
250
250
251
251
Check the values::
252
252
253
- sage: chi = DirichletGroup(24)([1,-1,-1]); chi
253
+ sage: chi = DirichletGroup(24)([1, -1, -1]); chi
254
254
Dirichlet character modulo 24 of conductor 24
255
255
mapping 7 |--> 1, 13 |--> -1, 17 |--> -1
256
256
sage: Lchi = lfun_character(chi)
257
257
sage: v = [0] + Lchi.lfunan(30).sage()
258
- sage: all(v[i] == chi(i) for i in (7,13,17))
258
+ sage: all(v[i] == chi(i) for i in (7, 13, 17))
259
259
True
260
260
"""
261
261
if not chi .is_primitive ():
@@ -285,7 +285,7 @@ def lfun_elliptic_curve(E):
285
285
Over number fields::
286
286
287
287
sage: K.<a> = QuadraticField(2)
288
- sage: E = EllipticCurve([1,a])
288
+ sage: E = EllipticCurve([1, a])
289
289
sage: L = LFunction(lfun_elliptic_curve(E))
290
290
sage: L(3)
291
291
1.00412346717019
@@ -338,10 +338,10 @@ def lfun_eta_quotient(scalings, exponents):
338
338
sage: L(1)
339
339
0.0374412812685155
340
340
341
- sage: lfun_eta_quotient([6],[4])
341
+ sage: lfun_eta_quotient([6], [4])
342
342
[[Vecsmall([7]), [Vecsmall([6]), Vecsmall([4])]], 0, [0, 1], 2, 36, 1]
343
343
344
- sage: lfun_eta_quotient([2,1, 4], [5,-2,-2])
344
+ sage: lfun_eta_quotient([2, 1, 4], [5, -2, -2])
345
345
Traceback (most recent call last):
346
346
...
347
347
PariError: sorry, noncuspidal eta quotient is not yet implemented
@@ -377,7 +377,7 @@ def lfun_quadratic_form(qf):
377
377
EXAMPLES::
378
378
379
379
sage: from sage.lfunctions.pari import lfun_quadratic_form, LFunction
380
- sage: Q = QuadraticForm(ZZ,2, [2,3, 4])
380
+ sage: Q = QuadraticForm(ZZ, 2, [2, 3, 4])
381
381
sage: L = LFunction(lfun_quadratic_form(Q))
382
382
sage: L(3)
383
383
0.377597233183583
0 commit comments