4
4
5
5
AUTHORS:
6
6
7
- - Frédéric Chapoton (2013 -03): Initial version
7
+ - Frédéric Chapoton (2023 -03): Initial version
8
8
"""
9
9
# ***************************************************************************
10
10
# Copyright (C) 2013 Frédéric Chapoton
34
34
35
35
class IntegerValuedPolynomialRing (UniqueRepresentation , Parent ):
36
36
r"""
37
- The integer-valued polynomial ring over a base ring.
37
+ The integer-valued polynomial ring over a base ring `R` .
38
38
39
39
Integer-valued polynomial rings are commutative and associative
40
40
algebras, with a basis indexed by non-negative integers.
@@ -57,7 +57,7 @@ class IntegerValuedPolynomialRing(UniqueRepresentation, Parent):
57
57
58
58
.. MATH::
59
59
60
- \binom{x}{i} = \sum_{k=0}^{i} (-1)^{i-k} \binom{i}{k} \binom{x+k}{k}.
60
+ \binom{x}{i} = \sum_{k=0}^{i} (-1)^{i-k} \binom{i}{k} \binom{x+k}{k}
61
61
62
62
with inverse:
63
63
@@ -357,10 +357,7 @@ class Shifted(CombinatorialFreeModule, BindableClass):
357
357
r"""
358
358
The integer-valued polynomial ring in the shifted basis.
359
359
360
- Integer-valued polynomial rings are commutative and associative
361
- algebras, with a basis indexed by non-negative integers.
362
-
363
- The basis used here is given by `S[i] = \binom{i+n}{i}` for `i \in \NN`.
360
+ The basis used here is given by `S[i] = \binom{i+x}{i}` for `i \in \NN`.
364
361
365
362
Assuming `n_1 \leq n_2`, the product of two monomials `S[n_1] \cdot S[n_2]`
366
363
is given by the sum
@@ -825,7 +822,7 @@ class Binomial(CombinatorialFreeModule, BindableClass):
825
822
r"""
826
823
The integer-valued polynomial ring in the binomial basis.
827
824
828
- The basis used here is given by `B[i] = \binom{n }{i}` for `i \in \NN`.
825
+ The basis used here is given by `B[i] = \binom{x }{i}` for `i \in \NN`.
829
826
830
827
Assuming `n_1 \leq n_2`, the product of two monomials `B[n_1] \cdot B[n_2]`
831
828
is given by the sum
0 commit comments