Skip to content

Commit a8ae402

Browse files
committed
minor tweaks in the doc
1 parent a7f5913 commit a8ae402

File tree

1 file changed

+5
-8
lines changed

1 file changed

+5
-8
lines changed

src/sage/rings/polynomial/integer_valued_polynomials.py

Lines changed: 5 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
55
AUTHORS:
66
7-
- Frédéric Chapoton (2013-03): Initial version
7+
- Frédéric Chapoton (2023-03): Initial version
88
"""
99
# ***************************************************************************
1010
# Copyright (C) 2013 Frédéric Chapoton
@@ -34,7 +34,7 @@
3434

3535
class IntegerValuedPolynomialRing(UniqueRepresentation, Parent):
3636
r"""
37-
The integer-valued polynomial ring over a base ring.
37+
The integer-valued polynomial ring over a base ring `R`.
3838
3939
Integer-valued polynomial rings are commutative and associative
4040
algebras, with a basis indexed by non-negative integers.
@@ -57,7 +57,7 @@ class IntegerValuedPolynomialRing(UniqueRepresentation, Parent):
5757
5858
.. MATH::
5959
60-
\binom{x}{i} = \sum_{k=0}^{i} (-1)^{i-k} \binom{i}{k} \binom{x+k}{k}.
60+
\binom{x}{i} = \sum_{k=0}^{i} (-1)^{i-k} \binom{i}{k} \binom{x+k}{k}
6161
6262
with inverse:
6363
@@ -357,10 +357,7 @@ class Shifted(CombinatorialFreeModule, BindableClass):
357357
r"""
358358
The integer-valued polynomial ring in the shifted basis.
359359
360-
Integer-valued polynomial rings are commutative and associative
361-
algebras, with a basis indexed by non-negative integers.
362-
363-
The basis used here is given by `S[i] = \binom{i+n}{i}` for `i \in \NN`.
360+
The basis used here is given by `S[i] = \binom{i+x}{i}` for `i \in \NN`.
364361
365362
Assuming `n_1 \leq n_2`, the product of two monomials `S[n_1] \cdot S[n_2]`
366363
is given by the sum
@@ -825,7 +822,7 @@ class Binomial(CombinatorialFreeModule, BindableClass):
825822
r"""
826823
The integer-valued polynomial ring in the binomial basis.
827824
828-
The basis used here is given by `B[i] = \binom{n}{i}` for `i \in \NN`.
825+
The basis used here is given by `B[i] = \binom{x}{i}` for `i \in \NN`.
829826
830827
Assuming `n_1 \leq n_2`, the product of two monomials `B[n_1] \cdot B[n_2]`
831828
is given by the sum

0 commit comments

Comments
 (0)