@@ -519,7 +519,7 @@ def module_generator(self):
519519 r = self .r ()
520520 s = self .s ()
521521 weight = s * Lambda [r ] - s * Lambda [0 ] * Lambda [r ].level () / Lambda [0 ].level ()
522- return [ b for b in self .module_generators if b .weight () == weight ][ 0 ]
522+ return next ( b for b in self .module_generators if b .weight () == weight )
523523
524524 def r (self ):
525525 """
@@ -993,8 +993,8 @@ def from_pm_diagram_to_highest_weight_vector(self, pm):
993993 sage: K.from_pm_diagram_to_highest_weight_vector(pm)
994994 [[2], [-2]]
995995 """
996- u = [ b for b in self .classical_decomposition ().module_generators
997- if b .to_tableau ().shape () == pm .outer_shape ()][ 0 ]
996+ u = next ( b for b in self .classical_decomposition ().module_generators
997+ if b .to_tableau ().shape () == pm .outer_shape ())
998998 ct = self .cartan_type ()
999999 rank = ct .rank () - 1
10001000 ct_type = ct .classical ().type ()
@@ -1031,7 +1031,7 @@ class KR_type_E6(KirillovReshetikhinCrystalFromPromotion):
10311031 [(1,)]
10321032 sage: b.e(0)
10331033 [(-2, 1)]
1034- sage: b = [ t for t in K if t.epsilon(1) == 1 and t.phi(3) == 1 and t.phi(2) == 0 and t.epsilon(2) == 0][0]
1034+ sage: b = next( t for t in K if t.epsilon(1) == 1 and t.phi(3) == 1 and t.phi(2) == 0 and t.epsilon(2) == 0)
10351035 sage: b
10361036 [(-1, 3)]
10371037 sage: b.e(0)
@@ -1622,7 +1622,7 @@ def module_generator(self):
16221622 weight = s * Lambda [r ] - s * Lambda [0 ]
16231623 if r == self .cartan_type ().rank () - 1 :
16241624 weight += s * Lambda [r ] # Special case for r == n
1625- return [ b for b in self .module_generators if b .weight () == weight ][ 0 ]
1625+ return next ( b for b in self .module_generators if b .weight () == weight )
16261626
16271627 def classical_decomposition (self ):
16281628 r"""
@@ -2489,7 +2489,8 @@ def from_pm_diagram_to_highest_weight_vector(self, pm):
24892489 sage: K.from_pm_diagram_to_highest_weight_vector(pm)
24902490 [[2, 2], [3, 3], [-3, -1]]
24912491 """
2492- u = [b for b in self .classical_decomposition ().module_generators if b .to_tableau ().shape () == pm .outer_shape ()][0 ]
2492+ u = next (b for b in self .classical_decomposition ().module_generators
2493+ if b .to_tableau ().shape () == pm .outer_shape ())
24932494 ct = self .cartan_type ()
24942495 rank = ct .rank ()- 1
24952496 ct_type = ct .classical ().type ()
@@ -2537,7 +2538,7 @@ def e0(self):
25372538 [[3, -3], [-3, -2], [-1, -1]]
25382539 """
25392540 n = self .parent ().cartan_type ().n
2540- b , l = self .lift ().to_highest_weight (index_set = list ( range (2 , n + 1 ) ))
2541+ b , l = self .lift ().to_highest_weight (index_set = range (2 , n + 1 ))
25412542 pm = self .parent ().from_highest_weight_vector_to_pm_diagram (b )
25422543 l1 , l2 = pm .pm_diagram [n - 1 ]
25432544 if l1 == 0 :
@@ -2562,7 +2563,7 @@ def f0(self):
25622563 sage: b.f(0) # indirect doctest
25632564 """
25642565 n = self .parent ().cartan_type ().n
2565- b , l = self .lift ().to_highest_weight (index_set = list ( range (2 , n + 1 ) ))
2566+ b , l = self .lift ().to_highest_weight (index_set = range (2 , n + 1 ))
25662567 pm = self .parent ().from_highest_weight_vector_to_pm_diagram (b )
25672568 l1 , l2 = pm .pm_diagram [n - 1 ]
25682569 if l2 == 0 :
@@ -2585,7 +2586,7 @@ def epsilon0(self):
25852586 1
25862587 """
25872588 n = self .parent ().cartan_type ().n
2588- b = self .lift ().to_highest_weight (index_set = list ( range (2 , n + 1 ) ))[0 ]
2589+ b = self .lift ().to_highest_weight (index_set = range (2 , n + 1 ))[0 ]
25892590 pm = self .parent ().from_highest_weight_vector_to_pm_diagram (b )
25902591 l1 , l2 = pm .pm_diagram [n - 1 ]
25912592 return l1
@@ -2602,7 +2603,7 @@ def phi0(self):
26022603 0
26032604 """
26042605 n = self .parent ().cartan_type ().n
2605- b = self .lift ().to_highest_weight (index_set = list ( range (2 , n + 1 ) ))[0 ]
2606+ b = self .lift ().to_highest_weight (index_set = range (2 , n + 1 ))[0 ]
26062607 pm = self .parent ().from_highest_weight_vector_to_pm_diagram (b )
26072608 l1 , l2 = pm .pm_diagram [n - 1 ]
26082609 return l2
@@ -2825,7 +2826,7 @@ def e0(self):
28252826 """
28262827 n = self .parent ().cartan_type ().rank ()- 1
28272828 s = self .parent ().s ()
2828- b , l = self .lift ().to_highest_weight (index_set = list ( range (2 , n + 1 ) ))
2829+ b , l = self .lift ().to_highest_weight (index_set = range (2 , n + 1 ))
28292830 pm = self .parent ().from_highest_weight_vector_to_pm_diagram (b )
28302831 l1 , l2 = pm .pm_diagram [n - 1 ]
28312832 l3 = pm .pm_diagram [n - 2 ][0 ]
@@ -2860,7 +2861,7 @@ def f0(self):
28602861 """
28612862 n = self .parent ().cartan_type ().rank ()- 1
28622863 s = self .parent ().s ()
2863- b , l = self .lift ().to_highest_weight (index_set = list ( range (2 , n + 1 ) ))
2864+ b , l = self .lift ().to_highest_weight (index_set = range (2 , n + 1 ))
28642865 pm = self .parent ().from_highest_weight_vector_to_pm_diagram (b )
28652866 l1 , l2 = pm .pm_diagram [n - 1 ]
28662867 l3 = pm .pm_diagram [n - 2 ][0 ]
@@ -2907,7 +2908,7 @@ def epsilon0(self):
29072908 True
29082909 """
29092910 n = self .parent ().cartan_type ().rank () - 1
2910- b , l = self .lift ().to_highest_weight (index_set = list ( range (2 , n + 1 ) ))
2911+ b , l = self .lift ().to_highest_weight (index_set = range (2 , n + 1 ))
29112912 pm = self .parent ().from_highest_weight_vector_to_pm_diagram (b )
29122913 l1 = pm .pm_diagram [n - 1 ][0 ]
29132914 l4 = pm .pm_diagram [n ][0 ]
@@ -2940,7 +2941,7 @@ def phi0(self):
29402941 True
29412942 """
29422943 n = self .parent ().cartan_type ().rank () - 1
2943- b , l = self .lift ().to_highest_weight (index_set = list ( range (2 , n + 1 ) ))
2944+ b , l = self .lift ().to_highest_weight (index_set = range (2 , n + 1 ))
29442945 pm = self .parent ().from_highest_weight_vector_to_pm_diagram (b )
29452946 l2 = pm .pm_diagram [n - 1 ][1 ]
29462947 l4 = pm .pm_diagram [n ][0 ]
@@ -3075,9 +3076,9 @@ def classical_decomposition(self):
30753076 C = self .cartan_type ().classical ()
30763077 s = QQ (self .s ())
30773078 if self .r () == C .n :
3078- c = [s / QQ (2 )]* C .n
3079+ c = [s / QQ (2 )]* C .n
30793080 else :
3080- c = [s / QQ (2 )]* (C .n - 1 )+ [- s / QQ (2 )]
3081+ c = [s / QQ (2 )]* (C .n - 1 ) + [- s / QQ (2 )]
30813082 return CrystalOfTableaux (C , shape = c )
30823083
30833084 def dynkin_diagram_automorphism (self , i ):
@@ -3155,6 +3156,7 @@ def neg(x):
31553156 y = list (x ) # map a (shallow) copy
31563157 y [0 ] = - y [0 ]
31573158 return tuple (y )
3159+
31583160 return {dic_weight [w ]: dic_weight_dual [neg (w )] for w in dic_weight }
31593161
31603162 @cached_method
@@ -3779,7 +3781,7 @@ def __init__(self, pm_diagram, from_shapes=None):
37793781 self ._list = [i for a in reversed (pm_diagram ) for i in a ]
37803782 self .width = sum (self ._list )
37813783
3782- def _repr_ (self ):
3784+ def _repr_ (self ) -> str :
37833785 r"""
37843786 Turning on pretty printing allows to display the `\pm` diagram as a
37853787 tableau with the `+` and `-` displayed.
@@ -3791,7 +3793,7 @@ def _repr_(self):
37913793 """
37923794 return repr (self .pm_diagram )
37933795
3794- def _repr_diagram (self ):
3796+ def _repr_diagram (self ) -> str :
37953797 """
37963798 Return a string representation of ``self`` as a diagram.
37973799
@@ -3910,7 +3912,7 @@ def intermediate_shape(self):
39103912 p = [p [i ] + ll [2 * i + 1 ] for i in range (self .n )]
39113913 return Partition (p )
39123914
3913- def heights_of_minus (self ):
3915+ def heights_of_minus (self ) -> list :
39143916 r"""
39153917 Return a list with the heights of all minus in the `\pm` diagram.
39163918
@@ -3930,7 +3932,7 @@ def heights_of_minus(self):
39303932 heights += [n - 2 * i ]* ((self .outer_shape ()+ [0 ]* n )[n - 2 * i - 1 ]- (self .intermediate_shape ()+ [0 ]* n )[n - 2 * i - 1 ])
39313933 return heights
39323934
3933- def heights_of_addable_plus (self ):
3935+ def heights_of_addable_plus (self ) -> list :
39343936 r"""
39353937 Return a list with the heights of all addable plus in the `\pm` diagram.
39363938
@@ -4176,7 +4178,7 @@ def _call_(self, x):
41764178 self ._cache [x ] = y
41774179 return y
41784180
4179- def _repr_type (self ):
4181+ def _repr_type (self ) -> str :
41804182 """
41814183 Return a string describing ``self``.
41824184
@@ -4188,7 +4190,7 @@ def _repr_type(self):
41884190 """
41894191 return "Diagram automorphism"
41904192
4191- def is_isomorphism (self ):
4193+ def is_isomorphism (self ) -> bool :
41924194 """
41934195 Return ``True`` as ``self`` is a crystal isomorphism.
41944196
0 commit comments