@@ -141,7 +141,7 @@ def eliminate_item(tietze_list):
141
141
if second is None :
142
142
return None
143
143
middle = tietze_list [1 :i ]
144
- end = tietze_list [i + 1 :l ]
144
+ end = tietze_list [i + 1 :l ]
145
145
if first == second :
146
146
return [- first ] + middle + end
147
147
else :
@@ -490,7 +490,7 @@ def find_root(domain):
490
490
if root [0 ] == 0 :
491
491
continue
492
492
root_bur = root [0 ]
493
- if root [1 ] == 1 :
493
+ if root [1 ] == 1 :
494
494
break
495
495
return root_bur
496
496
@@ -747,7 +747,7 @@ def __init__(self, names, cbg_type=None):
747
747
sage: U5 = AssionGroupU(5) # indirect doctest
748
748
sage: TestSuite(U5).run() # long time
749
749
"""
750
- n = Integer (len (names ))
750
+ n = Integer (len (names ))
751
751
if n < 1 :
752
752
raise ValueError ("the number of strands must be an integer larger than one" )
753
753
@@ -759,12 +759,12 @@ def __init__(self, names, cbg_type=None):
759
759
free_group = FreeGroup (names )
760
760
self ._cbg_type = cbg_type
761
761
self ._nstrands = n + 1
762
- self ._ident = self ._cbg_type .value + self ._nstrands .str ()
762
+ self ._ident = self ._cbg_type .value + self ._nstrands .str ()
763
763
self ._braid_group = BraidGroup (names )
764
764
765
765
# internal naming of elements for convenience
766
- b = [free_group ([i ]) for i in range (1 , n + 1 )]
767
- t = [free_group ([i , i + 1 ]) ** 3 for i in range (1 , n )]
766
+ b = [free_group ([i ]) for i in range (1 , n + 1 )]
767
+ t = [free_group ([i , i + 1 ]) ** 3 for i in range (1 , n )]
768
768
ti = [free_group ([- i , - i - 1 ]) ** 3 for i in range (1 , n )]
769
769
770
770
# first the braid relation
@@ -796,12 +796,12 @@ def __init__(self, names, cbg_type=None):
796
796
# the following global pointers to classical group realizations will be set in the private method
797
797
# _create_classical_realization
798
798
# ------------------------------------------------------------------------------------------------
799
- self ._classical_group = None # This is the classical Group returned by as_classical_group
800
- self ._classical_base_group = None # this only differs for special cases for Assion groups from the former
801
- self ._classical_invariant_form = None # invariant form of the classical base group
802
- self ._classical_embedding = None # if self._classical_group different from self._classical_base_group
803
- self ._centralizing_matrix = None # for Assion groups: element in classical base group commuting with self
804
- self ._centralizing_element = None # image under nat. map of the former one in the proj. classical group
799
+ self ._classical_group = None # This is the classical Group returned by as_classical_group
800
+ self ._classical_base_group = None # this only differs for special cases for Assion groups from the former
801
+ self ._classical_invariant_form = None # invariant form of the classical base group
802
+ self ._classical_embedding = None # if self._classical_group different from self._classical_base_group
803
+ self ._centralizing_matrix = None # for Assion groups: element in classical base group commuting with self
804
+ self ._centralizing_element = None # image under nat. map of the former one in the proj. classical group
805
805
return
806
806
807
807
def _repr_ (self ):
@@ -1095,7 +1095,7 @@ def set_classical_realization(self, base_group, proj_group, centralizing_matrix,
1095
1095
# ------------------------------------------------------------------------------
1096
1096
# Setting the List of Braid Images
1097
1097
# ------------------------------------------------------------------------------
1098
- im_gens = [base_group (m ) for m in transvec_matrices ]
1098
+ im_gens = [base_group (m ) for m in transvec_matrices ]
1099
1099
1100
1100
# ------------------------------------------------------------------------------
1101
1101
# By the work of Assion no check on the group homomorphism is needed, at all.
@@ -1109,7 +1109,7 @@ def set_classical_realization(self, base_group, proj_group, centralizing_matrix,
1109
1109
# ------------------------------------------------------------------------------
1110
1110
# Do the projective group realization if needed
1111
1111
# ------------------------------------------------------------------------------
1112
- embedding = self ._classical_embedding
1112
+ embedding = self ._classical_embedding
1113
1113
classical_group = None
1114
1114
if proj_group is None :
1115
1115
classical_group = base_group
@@ -1128,19 +1128,19 @@ def set_classical_realization(self, base_group, proj_group, centralizing_matrix,
1128
1128
nat_hom = base_group .hom (proj_group .gens (), check = check )
1129
1129
centralizing_element = nat_hom (centralizing_matrix )
1130
1130
classical_group_gens = [nat_hom (m ) for m in transvec_matrices ]
1131
- classical_group = proj_group .subgroup (classical_group_gens , canonicalize = False )
1131
+ classical_group = proj_group .subgroup (classical_group_gens , canonicalize = False )
1132
1132
hom_to_classic = self .hom (classical_group .gens (), check = check )
1133
1133
classical_group .register_conversion (hom_to_classic )
1134
1134
1135
1135
# ------------------------------------------------------------------------------
1136
1136
# register constructed items
1137
1137
# ------------------------------------------------------------------------------
1138
- self ._classical_group = classical_group
1139
- self ._classical_base_group = base_group
1140
- self ._classical_invariant_form = base_group .invariant_form ()
1141
- self ._centralizing_matrix = centralizing_matrix
1142
- self ._centralizing_element = centralizing_element
1143
- self ._classical_embedding = embedding
1138
+ self ._classical_group = classical_group
1139
+ self ._classical_base_group = base_group
1140
+ self ._classical_invariant_form = base_group .invariant_form ()
1141
+ self ._centralizing_matrix = centralizing_matrix
1142
+ self ._centralizing_element = centralizing_element
1143
+ self ._classical_embedding = embedding
1144
1144
return
1145
1145
1146
1146
# -------------------------------------------------------------------------------
@@ -1211,7 +1211,7 @@ def transvec2mat(v, bas=bas, bform=bform, fact=1):
1211
1211
# ------------------------------------------------------------------------------
1212
1212
centralizing_vector = xbas [mhalf - 1 ]
1213
1213
centralizing_matrix = base_group (transvec2mat (centralizing_vector , fact = 1 ))
1214
- transvec_matrices = [transvec2mat (v ) for v in transvections ]
1214
+ transvec_matrices = [transvec2mat (v ) for v in transvections ]
1215
1215
1216
1216
set_classical_realization (self , base_group , proj_group , centralizing_matrix , transvec_matrices )
1217
1217
return
@@ -1273,9 +1273,9 @@ def create_unitary_realization(self, m):
1273
1273
for j in range (mthird ):
1274
1274
pos = 3 * (j + 1 )- 1
1275
1275
transvections .append (xbas [pos - 1 ]) # t_{3i} = x_{3i-1}
1276
- if pos + 1 < m :
1276
+ if pos + 1 < m :
1277
1277
transvections .append (xbas [pos - 1 ]+ xbas [pos ]+ xbas [pos + 1 ]) # t_{3i+1} = x_{3i-1} + x_{3i} + x_{3i+1}
1278
- if pos + 3 < m :
1278
+ if pos + 3 < m :
1279
1279
transvections .append (xbas [pos + 1 ]+ xbas [pos + 2 ]+ xbas [pos + 3 ]) # t_{3i+2} = x_{3i+1} + x_{3i+2} + x_{3i+3}
1280
1280
1281
1281
# -----------------------------------------------------------
@@ -1294,7 +1294,7 @@ def transvec2mat(v, bas=bas, bform=bform, fact=a):
1294
1294
# ------------------------------------------------------------------------------
1295
1295
centralizing_vector = xbas [m - 2 ]+ xbas [m - 1 ]
1296
1296
centralizing_matrix = base_group (transvec2mat (centralizing_vector , fact = 1 ))
1297
- transvec_matrices = [transvec2mat (v ) for v in transvections ]
1297
+ transvec_matrices = [transvec2mat (v ) for v in transvections ]
1298
1298
1299
1299
set_classical_realization (self , base_group , proj_group , centralizing_matrix , transvec_matrices )
1300
1300
return
@@ -1314,13 +1314,13 @@ def transvec2mat(v, bas=bas, bform=bform, fact=a):
1314
1314
# Setting the Classical group
1315
1315
# -------------------------------------------------------------------------------
1316
1316
if self ._cbg_type == CubicBraidGroup .type .AssionS :
1317
- dim_sympl_group = n - 1 # S(n-1) = Sp(n-1, 3)
1318
- if n % 2 == 0 :
1319
- dim_sympl_group = n # S(n-1) = subgroup of PSp(n, 3)
1317
+ dim_sympl_group = n - 1 # S(n-1) = Sp(n-1, 3)
1318
+ if n % 2 == 0 :
1319
+ dim_sympl_group = n # S(n-1) = subgroup of PSp(n, 3)
1320
1320
create_sympl_realization (self , dim_sympl_group )
1321
1321
elif self ._cbg_type == CubicBraidGroup .type .AssionU :
1322
1322
dim_unitary_group = n - 1 # U(n-1) = GU(n-1, 2)
1323
- if n % 3 == 0 :
1323
+ if n % 3 == 0 :
1324
1324
dim_unitary_group = n # U(n-1) = subgroup PGU(n, 3)
1325
1325
create_unitary_realization (self , dim_unitary_group )
1326
1326
else :
@@ -1344,11 +1344,11 @@ def transvec2mat(v, bas=bas, bform=bform, fact=a):
1344
1344
UCF = UniversalCyclotomicField ()
1345
1345
z12 = UCF .gen (12 )
1346
1346
classical_group = self .as_matrix_group (root_bur = ~ z12 , domain = UCF , reduced = 'unitary' )
1347
- self ._classical_group = classical_group
1348
- self ._classical_base_group = classical_group
1349
- self ._classical_embedding = classical_group
1347
+ self ._classical_group = classical_group
1348
+ self ._classical_base_group = classical_group
1349
+ self ._classical_embedding = classical_group
1350
1350
if self ._classical_invariant_form is None :
1351
- self ._classical_invariant_form = classical_group .ambient ().invariant_form ()
1351
+ self ._classical_invariant_form = classical_group .ambient ().invariant_form ()
1352
1352
return
1353
1353
1354
1354
def _element_constructor_ (self , x , ** kwds ):
0 commit comments