@@ -657,17 +657,24 @@ def specialization(self, assignments):
657
657
658
658
sage: R.<r> = QQ[]
659
659
sage: P.<x,y> = ProjectiveSpace(R, 1)
660
- sage: f = DynamicalSystem([t * x, y], P)
661
- sage: g = DynamicalSystem([x, t * y], P)
660
+ sage: f = DynamicalSystem([r * x, y], P)
661
+ sage: g = DynamicalSystem([x, r * y], P)
662
662
sage: d = DynamicalSemigroup((f, g))
663
- sage: d.specialization({t:2})
663
+ sage: d.specialization({r:2})
664
+ Dynamical semigroup over Projective Space of dimension 1 over Rational Field defined by 2 dynamical systems:
665
+ Dynamical System of Projective Space of dimension 1 over Rational Field
666
+ Defn: Defined on coordinates by sending (x : y) to
667
+ (2*x : y)
668
+ Dynamical System of Projective Space of dimension 1 over Rational Field
669
+ Defn: Defined on coordinates by sending (x : y) to
670
+ (x : 2*y)
664
671
"""
665
672
specialized_systems = []
666
673
for ds in self .defining_systems ():
667
674
specialized_systems .append (ds .specialization (assignments ))
668
675
return DynamicalSemigroup (specialized_systems )
669
676
670
- def __mul__ (self , n ):
677
+ def __mul__ (self , other_dynamical_semigroup ):
671
678
r"""
672
679
Return a new :class:`DynamicalSemigroup` that is the result of multiplying
673
680
this dynamical semigroup with another dynamical semigroup of the same type
0 commit comments