@@ -79,7 +79,7 @@ class CoxeterMatrixGroup(UniqueRepresentation, FinitelyGeneratedMatrixGroup_gene
79
79
80
80
We can create Coxeter groups from Coxeter matrices::
81
81
82
- sage: # needs sage.libs.gap
82
+ sage: # needs sage.libs.gap sage.rings.number_field
83
83
sage: W = CoxeterGroup([[1, 6, 3], [6, 1, 10], [3, 10, 1]]); W
84
84
Coxeter group over Universal Cyclotomic Field with Coxeter matrix:
85
85
[ 1 6 3]
@@ -150,7 +150,7 @@ class CoxeterMatrixGroup(UniqueRepresentation, FinitelyGeneratedMatrixGroup_gene
150
150
graphs, we can input a Coxeter graph. Following the standard convention,
151
151
edges with no label (i.e. labelled by ``None``) are treated as 3::
152
152
153
- sage: # needs sage.libs.gap
153
+ sage: # needs sage.libs.gap sage.rings.number_field
154
154
sage: G = Graph([(0,3,None), (1,3,15), (2,3,7), (0,1,3)])
155
155
sage: W = CoxeterGroup(G); W
156
156
Coxeter group over Universal Cyclotomic Field with Coxeter matrix:
@@ -165,7 +165,7 @@ class CoxeterMatrixGroup(UniqueRepresentation, FinitelyGeneratedMatrixGroup_gene
165
165
Because there currently is no class for `\ZZ \cup \{ \infty \}`, labels
166
166
of `\infty` are given by `-1` in the Coxeter matrix::
167
167
168
- sage: # needs sage.libs.gap
168
+ sage: # needs sage.libs.gap sage.rings.number_field
169
169
sage: G = Graph([(0,1,None), (1,2,4), (0,2,oo)])
170
170
sage: W = CoxeterGroup(G)
171
171
sage: W.coxeter_matrix()
0 commit comments