Skip to content

Commit ad0a4b0

Browse files
author
Release Manager
committed
gh-37332: Cleaning in pautomorphicform.py <!-- ^^^^^ Please provide a concise, informative and self-explanatory title. Don't put issue numbers in there, do this in the PR body below. For example, instead of "Fixes #1234" use "Introduce new method to calculate 1+1" --> <!-- Describe your changes here in detail --> Remove unused variable in pautomorphicform.py <!-- Why is this change required? What problem does it solve? --> <!-- If this PR resolves an open issue, please link to it here. For example "Fixes #12345". --> <!-- If your change requires a documentation PR, please link it appropriately. --> ### 📝 Checklist <!-- Put an `x` in all the boxes that apply. --> <!-- If your change requires a documentation PR, please link it appropriately --> <!-- If you're unsure about any of these, don't hesitate to ask. We're here to help! --> <!-- Feel free to remove irrelevant items. --> - [ x] The title is concise, informative, and self-explanatory. - [x ] The description explains in detail what this PR is about. URL: #37332 Reported by: Eloi Torrents Reviewer(s): Matthias Köppe, Sebastian A. Spindler
2 parents 72b13b5 + b4c0cd0 commit ad0a4b0

File tree

1 file changed

+16
-27
lines changed

1 file changed

+16
-27
lines changed

src/sage/modular/btquotients/pautomorphicform.py

Lines changed: 16 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -511,9 +511,7 @@ def riemann_sum(self, f, center=1, level=0, E=None):
511511
else:
512512
E = self.parent()._X._BT.subdivide(E, level)
513513
value = 0
514-
ii = 0
515514
for e in E:
516-
ii += 1
517515
expansion = ((R1([e[1, 1], e[1, 0]]) ** (self.parent()._k - 2) * e.determinant() ** (-(self.parent()._k - 2) / 2)) * f(R1([e[0, 1], e[0, 0]]) / R1([e[1, 1], e[1, 0]]))).truncate(self.parent()._k - 1)
518516
dist = self.parent()._Sigma0(e.inverse(), check=False) * self.evaluate(e)
519517
value += eval_dist_at_powseries(dist, expansion)
@@ -1912,18 +1910,14 @@ def integrate(self, f, center=1, level=0, method='moments'):
19121910
R2 = PolynomialRing(f.base_ring(), 'x')
19131911
x = R2.gen()
19141912
value = 0
1915-
ii = 0
19161913
if method == 'riemann_sum':
19171914
for e in E:
1918-
ii += 1
19191915
exp = ((R1([e[1, 1], e[1, 0]])) ** (self.parent()._U.weight()) * e.determinant() ** (-(self.parent()._U.weight()) / 2)) * f(R1([e[0, 1], e[0, 0]]) / R1([e[1, 1], e[1, 0]]))
1920-
# exp = R2([tmp[jj] for jj in range(self.parent()._k-1)])
19211916
new = eval_dist_at_powseries(self.evaluate(e), exp.truncate(self.parent()._U.weight() + 1))
19221917
value += new
19231918
elif method == 'moments':
19241919
n = self.parent()._U.weight()
19251920
for e in E:
1926-
ii += 1
19271921
a, b, c, d = e.list()
19281922
delta = e.determinant()
19291923
verbose('%s' % (R2([e[0, 1], e[0, 0]])
@@ -2089,8 +2083,7 @@ def F(z, level=level, method=method):
20892083

20902084
# So far we cannot break it into two integrals because of the pole
20912085
# at infinity.
2092-
def coleman(self, t1, t2, E=None, method='moments', mult=False,
2093-
delta=-1):
2086+
def coleman(self, t1, t2, E=None, method='moments', mult=False):
20942087
r"""
20952088
If ``self`` is a `p`-adic automorphic form that
20962089
corresponds to a rigid modular form, then this computes the
@@ -2124,21 +2117,21 @@ def coleman(self, t1, t2, E=None, method='moments', mult=False,
21242117
sage: p = 7
21252118
sage: lev = 2
21262119
sage: prec = 10
2127-
sage: X = BruhatTitsQuotient(p,lev, use_magma = True) # optional - magma
2128-
sage: k = 2 # optional - magma
2129-
sage: M = X.harmonic_cocycles(k,prec) # optional - magma
2130-
sage: B = M.basis() # optional - magma
2131-
sage: f = 3*B[0] # optional - magma
2132-
sage: MM = X.padic_automorphic_forms(k,prec,overconvergent = True) # optional - magma
2133-
sage: D = -11 # optional - magma
2134-
sage: X.is_admissible(D) # optional - magma
2120+
sage: X = BruhatTitsQuotient(p, lev)
2121+
sage: k = 2
2122+
sage: M = X.harmonic_cocycles(k, prec)
2123+
sage: B = M.basis()
2124+
sage: f = 3*B[0]
2125+
sage: MM = X.padic_automorphic_forms(k, prec, overconvergent=True)
2126+
sage: D = -11
2127+
sage: X.is_admissible(D)
21352128
True
2136-
sage: K.<a> = QuadraticField(D) # optional - magma
2137-
sage: Kp.<g> = Qq(p**2,prec) # optional - magma
2138-
sage: P = Kp.gen() # optional - magma
2139-
sage: Q = 2+Kp.gen()+ p*(Kp.gen() +1) # optional - magma
2140-
sage: F = MM.lift(f) # long time, optional - magma
2141-
sage: J0 = F.coleman(P,Q,mult = True) # long time, optional - magma
2129+
sage: K.<a> = QuadraticField(D)
2130+
sage: Kp.<g> = Qq(p**2, prec)
2131+
sage: P = Kp.gen()
2132+
sage: Q = 2 + Kp.gen() + p*(Kp.gen()+1)
2133+
sage: F = MM.lift(f) # long time
2134+
sage: J0 = F.coleman(P, Q, mult=True) # long time
21422135
21432136
AUTHORS:
21442137
@@ -2152,17 +2145,14 @@ def coleman(self, t1, t2, E=None, method='moments', mult=False,
21522145
R1 = LaurentSeriesRing(K, 'r1', default_prec=self.parent()._U.base_ring().precision_cap())
21532146
if E is None:
21542147
E = self.parent()._source._BT.find_covering(t1, t2)
2155-
# print('Got ', len(E), ' open balls.')
21562148
value = 0
2157-
ii = 0
21582149
value_exp = K(1)
21592150
if method == 'riemann_sum':
21602151
for e in E:
2161-
ii += 1
21622152
b = e[0, 1]
21632153
d = e[1, 1]
21642154
y = (b - d * t1) / (b - d * t2)
2165-
poly = R1(y.log()) # R1(our_log(y))
2155+
poly = R1(y.log())
21662156
c_e = self.evaluate(e)
21672157
new = eval_dist_at_powseries(c_e, poly)
21682158
value += new
@@ -2171,7 +2161,6 @@ def coleman(self, t1, t2, E=None, method='moments', mult=False,
21712161

21722162
elif method == 'moments':
21732163
for e in E:
2174-
ii += 1
21752164
f = (x - t1) / (x - t2)
21762165
a, b, c, d = e.list()
21772166
y0 = f(R1([b, a]) / R1([d, c])) # f( (ax+b)/(cx+d) )

0 commit comments

Comments
 (0)