@@ -466,7 +466,7 @@ def subcomplex(self, data):
466
466
sub ._is_subcomplex_of = {self : new_data }
467
467
return sub
468
468
469
- def __hash__ (self ):
469
+ def __hash__ (self ) -> int :
470
470
r"""
471
471
TESTS::
472
472
@@ -477,7 +477,7 @@ def __hash__(self):
477
477
"""
478
478
return hash (frozenset (self ._cells_dict .items ()))
479
479
480
- def __eq__ (self , right ):
480
+ def __eq__ (self , right ) -> bool :
481
481
r"""
482
482
Two `\Delta`-complexes are equal, according to this, if they have
483
483
the same ``_cells_dict``.
@@ -494,7 +494,7 @@ def __eq__(self, right):
494
494
"""
495
495
return self ._cells_dict == right ._cells_dict
496
496
497
- def __ne__ (self , other ):
497
+ def __ne__ (self , other ) -> bool :
498
498
r"""
499
499
Return ``True`` if ``self`` and ``other`` are not equal.
500
500
@@ -1464,7 +1464,7 @@ def face_poset(self):
1464
1464
# store each n-simplex as a pair (n, idx).
1465
1465
for n in range (dim , 0 , - 1 ):
1466
1466
for idx , s in enumerate (self .n_cells (n )):
1467
- covers [(n , idx )] = list ({( n - 1 , i ) for i in s })
1467
+ covers [(n , idx )] = [( n - 1 , i ) for i in set ( s )]
1468
1468
# deal with vertices separately: they have no covers (in the
1469
1469
# dual poset).
1470
1470
for idx , s in enumerate (self .n_cells (0 )):
0 commit comments