Skip to content

Commit af4eb55

Browse files
committed
Some details from Chapoton's review.
1 parent a7af730 commit af4eb55

File tree

4 files changed

+5
-5
lines changed

4 files changed

+5
-5
lines changed

src/sage/combinat/composition.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1755,6 +1755,8 @@ def _element_constructor_(self, lst) -> Composition:
17551755
sage: P = Compositions()
17561756
sage: P([3,3,1]) # indirect doctest
17571757
[3, 3, 1]
1758+
sage: P(Partition([5,2,1]))
1759+
[5, 2, 1]
17581760
"""
17591761
if isinstance(lst, (Composition, Partition)):
17601762
lst = list(lst)

src/sage/combinat/partition.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5496,7 +5496,6 @@ def specht_module(self, base_ring=None):
54965496
54975497
sage: SM = Partition([2,2,1]).specht_module(QQ); SM
54985498
Specht module of [2, 2, 1] over Rational Field
5499-
sage: s = SymmetricFunctions(QQ).s()
55005499
sage: SM.frobenius_image() # needs sage.modules
55015500
s[2, 2, 1]
55025501
"""

src/sage/combinat/permutation.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7343,7 +7343,7 @@ def cardinality(self):
73437343
return factorial(self.n)
73447344

73457345
@cached_method
7346-
def gens(self):
7346+
def gens(self) -> tuple:
73477347
r"""
73487348
Return a set of generators for ``self`` as a group.
73497349

src/sage/combinat/symmetric_group_algebra.py

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1573,14 +1573,13 @@ def specht_module(self, D):
15731573
sage: SM = SGA.specht_module(Partition([3,1,1]))
15741574
sage: SM
15751575
Specht module of [3, 1, 1] over Rational Field
1576-
sage: s = SymmetricFunctions(QQ).s()
1577-
sage: s(SM.frobenius_image())
1576+
sage: SM.frobenius_image()
15781577
s[3, 1, 1]
15791578
15801579
sage: SM = SGA.specht_module([(1,1),(1,3),(2,2),(3,1),(3,2)])
15811580
sage: SM
15821581
Specht module of [(1, 1), (1, 3), (2, 2), (3, 1), (3, 2)] over Rational Field
1583-
sage: s(SM.frobenius_image())
1582+
sage: SM.frobenius_image()
15841583
s[2, 2, 1] + s[3, 1, 1] + s[3, 2]
15851584
"""
15861585
from sage.combinat.specht_module import SpechtModule

0 commit comments

Comments
 (0)