@@ -659,49 +659,6 @@ def sanitize_var(exprs):
659
659
return soln
660
660
661
661
662
- # def desolve_laplace2(de,vars,ics=None):
663
- # """
664
- # Solves an ODE using laplace transforms via maxima. Initial conditions
665
- # are optional.
666
-
667
- # INPUT:
668
- # de -- a lambda expression representing the ODE
669
- # (eg, de = "diff(f(x),x,2)=diff(f(x),x)+sin(x)")
670
- # vars -- a list of strings representing the variables
671
- # (eg, vars = ["x","f"], if x is the independent
672
- # variable and f is the dependent variable)
673
- # ics -- a list of numbers representing initial conditions,
674
- # with symbols allowed which are represented by strings
675
- # (eg, f(0)=1, f'(0)=2 is ics = [0,1,2])
676
-
677
- # EXAMPLES::
678
-
679
- # sage: from sage.calculus.desolvers import desolve_laplace
680
- # sage: x = var('x')
681
- # sage: f = function('f')(x)
682
- # sage: de = lambda y: diff(y,x,x) - 2*diff(y,x) + y
683
- # sage: desolve_laplace(de(f(x)),[f,x])
684
- # #x*%e^x*(?%at('diff('f(x),x,1),x=0))-'f(0)*x*%e^x+'f(0)*%e^x
685
- # sage: desolve_laplace(de(f(x)),[f,x],[0,1,2]) # IC option does not work
686
- # #x*%e^x*(?%at('diff('f(x),x,1),x=0))-'f(0)*x*%e^x+'f(0)*%e^x
687
-
688
- # AUTHOR: David Joyner (1st version 1-2006, 8-2007)
689
- # """
690
- # ######## this method seems reasonable but doesn't work for some reason
691
- # name0 = vars[0]._repr_()[0:(len(vars[0]._repr_())-2-len(str(vars[1])))]
692
- # name1 = str(vars[1])
693
- # #maxima("de:"+de+";")
694
- # if ics is not None:
695
- # ic0 = maxima("ic:"+str(vars[1])+"="+str(ics[0]))
696
- # d = len(ics)
697
- # for i in range(d-1):
698
- # maxima(vars[0](vars[1])).diff(vars[1],i).atvalue(ic0,ics[i+1])
699
- # de0 = de._maxima_()
700
- # #cmd = "desolve("+de+","+vars[1]+"("+vars[0]+"));"
701
- # #return maxima.eval(cmd)
702
- # return de0.desolve(vars[0]).rhs()
703
-
704
-
705
662
def desolve_laplace (de , dvar , ics = None , ivar = None ):
706
663
"""
707
664
Solve an ODE using Laplace transforms. Initial conditions are optional.
0 commit comments