@@ -85,7 +85,7 @@ def _latex_module(R, m):
85
85
'\\ Bold{Z}^{3}'
86
86
sage: _latex_module(ZZ, 0)
87
87
'0'
88
- sage: _latex_module(GF(3), 1) # optional - sage.rings.finite_rings
88
+ sage: _latex_module(GF(3), 1)
89
89
'\\ Bold{F}_{3}^{1}'
90
90
"""
91
91
if m == 0 :
@@ -188,11 +188,11 @@ def ChainComplex(data=None, base_ring=None, grading_group=None,
188
188
Chain complex with at most 2 nonzero terms over Integer Ring
189
189
190
190
sage: m = matrix(ZZ, 2, 2, [0, 1, 0, 0])
191
- sage: D = ChainComplex([m, m], base_ring=GF(2)); D # optional - sage.rings.finite_rings
191
+ sage: D = ChainComplex([m, m], base_ring=GF(2)); D
192
192
Chain complex with at most 3 nonzero terms over Finite Field of size 2
193
- sage: D == loads(dumps(D)) # optional - sage.rings.finite_rings
193
+ sage: D == loads(dumps(D))
194
194
True
195
- sage: D.differential(0)==m, m.is_immutable(), D.differential(0).is_immutable() # optional - sage.rings.finite_rings
195
+ sage: D.differential(0)==m, m.is_immutable(), D.differential(0).is_immutable()
196
196
(True, False, True)
197
197
198
198
Note that when a chain complex is defined in Sage, new
@@ -336,9 +336,9 @@ def __init__(self, parent, vectors, check=True):
336
336
337
337
EXAMPLES::
338
338
339
- sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])}, # optional - sage.rings.finite_rings
339
+ sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])},
340
340
....: base_ring=GF(7))
341
- sage: C.category() # optional - sage.rings.finite_rings
341
+ sage: C.category()
342
342
Category of chain complexes over Finite Field of size 7
343
343
344
344
TESTS::
@@ -771,7 +771,7 @@ def rank(self, degree, ring=None):
771
771
[2]
772
772
sage: C.rank(0)
773
773
1
774
- sage: C.rank(0, ring=GF(2)) # optional - sage.rings.finite_rings
774
+ sage: C.rank(0, ring=GF(2))
775
775
0
776
776
"""
777
777
degree = self .grading_group ()(degree )
@@ -1079,12 +1079,12 @@ def __eq__(self, other):
1079
1079
1080
1080
EXAMPLES::
1081
1081
1082
- sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])}, # optional - sage.rings.finite_rings
1082
+ sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])},
1083
1083
....: base_ring=GF(2))
1084
- sage: D = ChainComplex({0: matrix(GF(2), 2, 3, [1, 0, 0, 0, 0, 0]), # optional - sage.rings.finite_rings
1084
+ sage: D = ChainComplex({0: matrix(GF(2), 2, 3, [1, 0, 0, 0, 0, 0]),
1085
1085
....: 1: matrix(ZZ, 0, 2),
1086
1086
....: 3: matrix(ZZ, 0, 0)}) # base_ring determined from the matrices
1087
- sage: C == D # optional - sage.rings.finite_rings
1087
+ sage: C == D
1088
1088
True
1089
1089
"""
1090
1090
if not isinstance (other , ChainComplex_class ) or self .base_ring () != other .base_ring ():
@@ -1108,16 +1108,16 @@ def __ne__(self, other):
1108
1108
1109
1109
EXAMPLES::
1110
1110
1111
- sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])}, # optional - sage.rings.finite_rings
1111
+ sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])},
1112
1112
....: base_ring=GF(2))
1113
- sage: D = ChainComplex({0: matrix(GF(2), 2, 3, [1, 0, 0, 0, 0, 0]), # optional - sage.rings.finite_rings
1113
+ sage: D = ChainComplex({0: matrix(GF(2), 2, 3, [1, 0, 0, 0, 0, 0]),
1114
1114
....: 1: matrix(ZZ, 0, 2),
1115
1115
....: 3: matrix(ZZ, 0, 0)}) # base_ring determined from the matrices
1116
- sage: C != D # optional - sage.rings.finite_rings
1116
+ sage: C != D
1117
1117
False
1118
1118
sage: E = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])},
1119
1119
....: base_ring=ZZ)
1120
- sage: C != E # optional - sage.rings.finite_rings
1120
+ sage: C != E
1121
1121
True
1122
1122
"""
1123
1123
return not self == other
@@ -1143,7 +1143,7 @@ def _homology_chomp(self, deg, base_ring, verbose, generators):
1143
1143
1144
1144
EXAMPLES::
1145
1145
1146
- sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])}, base_ring=GF(2)) # optional - sage.rings.finite_rings
1146
+ sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])}, base_ring=GF(2))
1147
1147
sage: C._homology_chomp(None, GF(2), False, False) # optional - CHomP # optional - sage.rings.finite_rings
1148
1148
doctest:...: DeprecationWarning: the CHomP interface is deprecated; hence so is this function
1149
1149
See https://github.com/sagemath/sage/issues/33777 for details.
@@ -1253,7 +1253,7 @@ def homology(self, deg=None, base_ring=None, generators=False,
1253
1253
sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])})
1254
1254
sage: C.homology()
1255
1255
{0: Z x Z, 1: Z x C3}
1256
- sage: C.homology(deg=1, base_ring=GF(3)) # optional - sage.rings.finite_rings
1256
+ sage: C.homology(deg=1, base_ring=GF(3))
1257
1257
Vector space of dimension 2 over Finite Field of size 3
1258
1258
sage: D = ChainComplex({0: identity_matrix(ZZ, 4), 4: identity_matrix(ZZ, 30)})
1259
1259
sage: D.homology()
@@ -1461,8 +1461,8 @@ def betti(self, deg=None, base_ring=None):
1461
1461
sage: C.betti()
1462
1462
{0: 2, 1: 1}
1463
1463
1464
- sage: D = ChainComplex({0: matrix(GF(5), [[3, 1],[1, 2]])}) # optional - sage.rings.finite_rings
1465
- sage: D.betti() # optional - sage.rings.finite_rings
1464
+ sage: D = ChainComplex({0: matrix(GF(5), [[3, 1],[1, 2]])})
1465
+ sage: D.betti()
1466
1466
{0: 1, 1: 1}
1467
1467
"""
1468
1468
if base_ring is None :
0 commit comments