@@ -85,21 +85,23 @@ def classical_modular_polynomial(l, j=None):
85
85
sage: j = GF(q).random_element()
86
86
sage: l = random_prime(50)
87
87
sage: Y = polygen(parent(j), 'Y')
88
- sage: classical_modular_polynomial(l,j) == classical_modular_polynomial(l)(j,Y)
88
+ sage: classical_modular_polynomial(l, j) == classical_modular_polynomial(l)(j, Y)
89
89
True
90
90
sage: p = 2^216 * 3^137 - 1
91
- sage: F.<i> = GF(p^2 , modulus=[1,0,1])
91
+ sage: F.<i> = GF((p,2) , modulus=[1,0,1])
92
92
sage: l = random_prime(50)
93
93
sage: j = F.random_element()
94
94
sage: Y = polygen(parent(j), 'Y')
95
- sage: classical_modular_polynomial(l,j) == classical_modular_polynomial(l)(j,Y)
95
+ sage: classical_modular_polynomial(l, j) == classical_modular_polynomial(l)(j, Y)
96
96
True
97
97
sage: E = EllipticCurve(F, [0, 6, 0, 1, 0])
98
98
sage: j = E.j_invariant()
99
- sage: classical_modular_polynomial(l,j) == classical_modular_polynomial(l)(j,Y)
99
+ sage: l = random_prime(50)
100
+ sage: classical_modular_polynomial(l, j) == classical_modular_polynomial(l)(j, Y)
100
101
True
101
102
sage: R.<Y> = QQ['Y']
102
103
sage: j = QQ(1/2)
104
+ sage: l = random_prime(50)
103
105
sage: classical_modular_polynomial(l, j) == classical_modular_polynomial(l)(j, Y)
104
106
True
105
107
"""
0 commit comments